
BIDIRECTIONAL CONTEXTUAL GRAMMARS

Ing. Jiří TECHET, Doctoral Degree Programme (1)
Dept. of Information Systems, FIT, BUT

E-mail: techet@fit.vutbr.cz

Supervised by: Prof. Alexander Meduna

ABSTRACT

The present paper introduces and discusses bidirectional contextual grammars as
a straightforward generalization of externally generating contextual grammars without
choice. In essence, besides ordinary derivation steps, the bidirectional contextual gram-
mars can also make reduction steps, which shorten the rewritten strings. This paper demon-
strates that these grammars characterize the family of recursively enumerable languages.
In fact, this characterization holds even in terms of one-turn bidirectional contextual gram-
mars, which can change derivations steps to reduction steps during the generation process
no more than once.

1 INTRODUCTION

Over its history, the language theory has always paid a special attention to the Marcus
contextual grammars because these grammars fulfill a significant role in the generation of
both natural and formal languages (chapter 5 and 6 in Volume II of [7]). It thus come
as no surprise that the language theory has discussed a large variety of these grammars
(see [6]). This paper contributes to this trend by investigating another variant of these
grammars whose introduction is inspired by two grammatically oriented studies in the
formal language theory. First, more than three decades ago, this theory used grammars
with special end markers during the generation of languages (see page 99 in [8]). Second,
about two decades ago, the language theory introduced various bidirectional grammars
that both derive and reduce strings during their generation process (see [1], [5]). These two
studies have given rise to the variant of contextual grammars discuss in this paper.

More specifically, this paper introduces bidirectional contextual grammars as a
straightforward generalization of the externally generating contextual grammars without
choice (see page 240 in Volume II of [7]). A bidirectional contextual grammar, G, is based
on derivation and reduction rules of the form (x,y), where x and y are strings. From a
string z, G makes a derivation step by using a derivation rule, (u,v), like in any externally
generating contextual grammars that is, it changes z to uzv by using this derivation rule. In

addition, however, by using a reduction rule, (t,w), from tzw, G makes a reduction step so it
changes tzw to z. If G can make a computation from G’s axiom, s, to z, where $ is a spe-
cial bounding symbol, z is in the language defined by G. Two consecutive computational
steps G makes are called a turn if one is a reduction step and the other represents a deriva-
tion step. Let i be a non-negative integer. G is an i-turn bidirectional contextual grammar
if G makes no more than i turns during every generation of string from its language.

As its main result, this paper proves that the bidirectional one-turn contextual gram-
mars characterize the family of recursively enumerable languages. This result is of some
interest because externally generating contextual grammars without choice define only the
family of minimal linear languages (see Lemma 2.9 on page 247 in Volume II of [7]). In
fact, every recursively enumerable language is defined by a one-turn bidirectional contex-
tual grammar. In the conclusion of this paper, we suggest some open problem areas related
to this result.

2 PRELIMINARIES

We assume that the reader is familiar with the language theory (see [3], [7]). For an
alphabet, V , card(V) denotes the cardinality of V . V ∗ represents the free monoid generated
by V under the operation of concatenation. The unit of V ∗ is denoted by ε. Set V + =
V ∗−{ε}. For w ∈ V ∗, |w| and alph(w) denote the length of w and the set of symbols
occurring in w, respectively. For L ⊆V ∗, alph(L) = {a : a ∈ alph(w),w ∈ L}. For w ∈V ∗

and for a ∈ V , occur(w,a) denotes the number of occurrences of a in w. For w ∈ V ∗,
prefix(w) and suffix(w) denote the set of all w’s prefixes and suffixes, respectively. For
(w1, . . . ,wn) ∈V ∗

1 × . . .×V ∗
n , where V1, . . . ,Vn are finite alphabets, concat((w1, . . . ,wn)) =

w1 . . .wn.
A queue grammar (see [2]) is a sixtuple, Q = (V,T,W,F,s,P), where V and W are

alphabets satisfying s ∈ VW , T ⊆ V , F ⊆W , s ∈ (V − T)(W −F), and P ⊆ (V × (W −
F))×(V ∗×W) is a finite relation whose elements are called productions. For every a ∈V ,
there exists a production (a,b,x,c) ∈ P. If u,v ∈ V ∗W such that u = arb, v = rxc, a ∈ V ,
r,x ∈V ∗, b,c ∈W , and (a,b,x,c) ∈ P, then u ⇒ v [(a,b,x,c)] in G or, simply, u ⇒ v. In the
standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗.
The language of Q, L(Q), is defined as L(Q) = {w ∈ T ∗ : s ⇒∗ w f where f ∈ F}.

A left-extended queue grammar is a sixtuple, Q = (V,T,W,F,s,P), where V , T , W , F ,
s, and P have the same meaning as in a queue grammar; in addition, assume that # /∈V ∪W .
If u,v ∈ V ∗{#}V ∗W so that u = w#arb, v = wa#rxc, a ∈ V , r,x,w ∈ V ∗, b,c ∈ W , and
(a,b,x,c) ∈ P, then u ⇒ v [(a,b,x,c)] in G or, simply, u ⇒ v. In the standard manner,
extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗. The language of
Q, L(Q), is defined as L(Q) = {v ∈ T ∗ : #s ⇒∗ w#v f for some w ∈V ∗ and f ∈V ∗}.

3 DEFINITIONS

A bidirectional contextual grammar is a triple G = (T ∪{$},Pd ∪Pr,S), where T is
an alphabet, $ a special symbol, $ 6∈ T , P ⊆ (T ∪{$})∗× (T ∪{$})∗, P = Pd ∪Pr, and S
is a finite language over T . For every x ∈ (T ∪{$})∗ and (u,v) ∈ Pd , write x d⇒ uxv, and
for every (u,v) ∈ Pr, write uxv r⇒ x; intuitively, d and r stand for a direct derivation and

a direct reduction, respectively. To express that G makes x d⇒ uxv according to (u,v),
write x d⇒ uxv [(u,v)]; uxv r⇒ x [(u,v)] has an analogical meaning in terms of r⇒. Let
y,x ∈ (T ∪ {$})∗. We say that G makes a direct computation of x from y, symbolically
written as y ⇒ x, if either y d⇒ x or y r⇒ x in G. In the standard manner, extend ⇒ to ⇒m,
where m≥ 0; then, based on ⇒m, define ⇒+ and ⇒∗. The $-bounded language generated
by G, $L(G), is defined as

$L(G) = {z : s ⇒∗ z in G,z ∈ T ∗,s ∈ S}.

A computation of the form s ⇒∗ z in G, where z ∈ T ∗ and s ∈ S, is said to be successful.
Any two-step computation, y ⇒2 x, where y,x ∈ (T ∪{$})∗, represents a turn if y ⇒2 x
is of the form y d⇒ z r⇒ x or y r⇒ z d⇒ x, for some z ∈ (T ∪{$})∗; less formally, the
two-step computation y ⇒2 x consists of one direct derivation and one direct reduction. G
is i-turn if any successful computation in G contains no more than i turns.

4 RESULTS

This section demonstrates that every recursively enumerable language is defined by
a one-turn bidirectional contextual grammar.

Lemma 1. For every recursively enumerable language, L, there is a left-extended queue
grammar, G, such that L = L(G).

Proof. See Lemma 1 in [2]. �

Lemma 2. Let Q′ be a left-extended queue grammar. Then, there exists a left-extended
queue grammar, Q = (V,T,W,F,s,R), such that L(Q′) = L(Q), W = X ∪Y ∪{1}, where
X ,Y,{1} are pairwise disjoint, and every (a,b,x,c) ∈ R satisfies either a ∈ V −T , b ∈ X,
x ∈ (V −T)∗, c ∈ X ∪{1} or a ∈V −T , b ∈ Y ∪{1}, x ∈ T ∗, c ∈ Y .

Proof. See Lemma 1 in [4]. �

Consider the left-extended queue grammar, Q = (V,T,W,F,s,R), from Lemma 2. Its
properties imply that Q generates every word in L(Q) so that it passes through state 1.
Before it enters 1, it generates only words over V −T ; after entering 1, it generates only
words over T . In greater detail, the next corollary expresses this property, which fulfills a
crucial role in the proof of Theorem 1.

Corollary 1. Q constructed in the proof of Lemma 2 generates every h ∈ L(Q) in this way

#a0q0
⇒ a0#x0q1 [(a0,q0,z0,q1)]
⇒ a0a1#x1q2 [(a1,q1,z1,q2)]

...
⇒ a0a1 . . .ak#xkqk+1 [(ak,qk,zk,qk+1)]
⇒ a0a1 . . .akak+1#xk+1y1qk+2 [(ak+1,qk+1,y1,qk+2)]

...
⇒ a0a1 . . .ak+m−1#xk+m−1y1 . . .ym−1qk+m [(ak+m−1,qk+m−1,ym−1,qk+m)]
⇒ a0a1 . . .ak+m−1ak+m#y1 . . .ymqk+m+1 [(ak+m,qk+m,ym,qk+m+1)],

where k,m≥ 1, ai ∈V −T for i = 0, . . . ,k+m, x j ∈ (V −T)∗ for j = 1, . . . ,k+m, s = a0q0,
a jx j = x j−1z j for j = 1, . . . ,k, a1 . . .akxk = z0 . . .zk, ak+1 . . .ak+m = xk, q0,q1, . . . ,qk+m ∈
W −F and qk+m+1 ∈ F, z0, . . . ,zk ∈ (V −T)∗, y1, . . . ,ym ∈ T ∗, h = y1y2 . . .ym−1ym. �

Theorem 1. Let L be a recursively enumerable language. Then, there exists a one-turn
bidirectional contextual grammar, G, such that L = $L(G).

Proof. Let L be a recursively enumerable language. Let Q = (V,T,W,F,s,R) be a left-
extended queue grammar such that L(Q) = L and Q satisfies the properties described in
Lemma 2 and Corollary 1. Select a symbol, o ∈ T . Define the injection, α, from R to
{o}+ so that α is an injective homomorphism when its domain is extended to R∗. Further,
define the binary relation, f , over V so that f (ε) = ε and f (a) = {α((a,b,c1 . . .cn,d)) :
(a,b,c1 . . .cn,d) ∈ R} for all a ∈ V . Similarly, define the binary relation, g, over W so
that g(b) = {α((a,b,c1 . . .cn,d)) : (a,b,c1 . . .cn,d) ∈ R} for all b ∈ W . In the standard
manner, extend the domain of f and g to V ∗ and W ∗, respectively. Define the bidirectional
contextual grammar,

G = (T ∪{$},Pd ∪Pr,S),

with

S = { c1 . . .cn$α((a,b,c1 . . .cn,d)) : (a,b,c1 . . .cn,d) ∈ R,c1, . . . ,cn ∈ T
for some n ≥ 0,d ∈ F}

and Pd , Pr constructed as follows:

1. For every (a,b,c1 . . .cn,d)∈R, c1, . . . ,cn ∈ T , for some n≥ 0, d ∈ (W−F), d ∈ g(d),
add
(c1 . . .cn,$$d$$α((a,b,c1 . . .cn,d))) to Pd;

2. For every (a,b,c1 . . .cn,d) ∈ R, c1, . . . ,cn ∈ (V −T), for some n ≥ 0, d ∈ (W −F),
c1 ∈ f (c1), . . . ,cn ∈ f (cn), d ∈ g(d), add
(c1$c2$. . .cn$,$$d$$α((a,b,c1 . . .cn,d))) to Pd;

3. For every a0 ∈ f (a0),q0 ∈ f (q0) such that s = a0q0, add
($a0$,$$q0$$) to Pd;

4. For every r ∈ R, add
($α(r),α(r)$$α(r)$$) to Pr.

Denote the set of productions introduced in step i of the construction by iPd , for
1 ≤ i ≤ 3.

BASIC IDEA:

Each simulation consists of two phases. In the first phase, the simulation of Q’s
derivation is performed nondeterministically, and in the second phase, this simulation is
verified. Next, we sketch both phases in greater detail.

Simulation phase G performs the simulation of Q in reverse. That is, the last derivation
step in Q is simulated first in G, and the first step in Q is simulated last in G. In general,
G keeps the binary code of the string over V that Q generates as a prefix of the current
sentential form while keeping the binary code of states as its suffix. By a string from S,
the Q’s production of the form p0 : (a,b,c1 . . .cn,d), d ∈ F is simulated; it places c1 . . .cn
as the prefix and the p0’s code as the suffix of the sentential form. Then, productions
p1 : (a,b,c1 . . .cn,d), c1, . . . ,cn ∈ T , d ∈ (W −F) are simulated by productions from 1Pd .
They place c1 . . .cn as the prefix and the codes of d and p1 as the suffix of the sentential
form. The suffix codes of the sentential form are always separated by $$. Productions
from 2Pd simulate productions p2 : (a,b,c1 . . .cn,d), c1, . . . ,cn ∈ (V −T); they place codes
of c1, . . . ,cn as the prefix and, again, d’s and p2’s code as the suffix. The prefix codes are
always separated by $. Finally, by productions from 3Pd , the axiom s = a0q0 from Q is
simulated.

Verification phase During every step of the verification phase, G makes sure that the two
suffix binary codes and the prefix binary code correspond to the same production in Q. If
they do, all these three codes are removed from the sentential form. In this way, step by
step, G verifies that the previously made simulation phase was performed properly. �

Due to the requirements concerning the length of this paper, we omit the rigorous
proof of the theorem above which is left to the reader.

REFERENCES

[1] Appelt, D. E.: Bidirectional grammars and the design of natural language generation
systems, Proceedings of Third Conference on Theoretical Issues in Natural Language
Processing (TINLAP-3), pages 185–191, Las Cruces, New Mexico, 1987.

[2] Kleijn, H. C. M., Rozenberg, G.: On the generative power of regular pattern grammars,
Acta Informatica, 20:391–411, 1983.

[3] Meduna, A.: Automata and Languages: Theory and Applications, Springer-Verlag,
London, 2000.

[4] Meduna, A.: Simultaneously one-turn two-pushdown automata, International Journal
of Computer Mathematics, 80:679–687, 2003.

[5] Meduna, A.: Two-way metalinear pc grammar systems and their descriptional com-
plexity, Acta Cybernetica, 16:385–397, 2004.

[6] Paun, G.:Marcus contextual grammars, Kluwer Academic Publishers, London, 1997.

[7] Rozenberg, G., Salomaa, A., editors: Handbook of Formal Languages, volume 1
through 3, Springer-Verlag, Berlin, 1997.

[8] Salomaa, A.: Formal Languages, Academic Press, New York, 1973.

