BIDIRECTIONAL CONTEXTUAL GRAMMARS

Ing. Jiří TECHET, Doctoral Degree Programme (1)
Dept. of Information Systems, FIT, BUT
E-mail: techet@fit.vutbr.cz

Supervised by: Prof. Alexander Meduna

Abstract

The present paper introduces and discusses bidirectional contextual grammars as a straightforward generalization of externally generating contextual grammars without choice. In essence, besides ordinary derivation steps, the bidirectional contextual grammars can also make reduction steps, which shorten the rewritten strings. This paper demonstrates that these grammars characterize the family of recursively enumerable languages. In fact, this characterization holds even in terms of one-turn bidirectional contextual grammars, which can change derivations steps to reduction steps during the generation process no more than once.

1 INTRODUCTION

Over its history, the language theory has always paid a special attention to the Marcus contextual grammars because these grammars fulfill a significant role in the generation of both natural and formal languages (chapter 5 and 6 in Volume II of [7]). It thus come as no surprise that the language theory has discussed a large variety of these grammars (see [6]). This paper contributes to this trend by investigating another variant of these grammars whose introduction is inspired by two grammatically oriented studies in the formal language theory. First, more than three decades ago, this theory used grammars with special end markers during the generation of languages (see page 99 in [8]). Second, about two decades ago, the language theory introduced various bidirectional grammars that both derive and reduce strings during their generation process (see [1], [5]). These two studies have given rise to the variant of contextual grammars discuss in this paper.

More specifically, this paper introduces bidirectional contextual grammars as a straightforward generalization of the externally generating contextual grammars without choice (see page 240 in Volume II of [7]). A bidirectional contextual grammar, G, is based on derivation and reduction rules of the form (x, y), where x and y are strings. From a string z, G makes a derivation step by using a derivation rule, (u, v), like in any externally generating contextual grammars that is, it changes z to $u z v$ by using this derivation rule. In
addition, however, by using a reduction rule, (t, w), from $t z w, G$ makes a reduction step so it changes $t z w$ to z. If G can make a computation from G 's axiom, s, to $\$ z \$$, where $\$$ is a special bounding symbol, z is in the language defined by G. Two consecutive computational steps G makes are called a turn if one is a reduction step and the other represents a derivation step. Let i be a non-negative integer. G is an i-turn bidirectional contextual grammar if G makes no more than i turns during every generation of string from its language.

As its main result, this paper proves that the bidirectional one-turn contextual grammars characterize the family of recursively enumerable languages. This result is of some interest because externally generating contextual grammars without choice define only the family of minimal linear languages (see Lemma 2.9 on page 247 in Volume II of [7]). In fact, every recursively enumerable language is defined by a one-turn bidirectional contextual grammar. In the conclusion of this paper, we suggest some open problem areas related to this result.

2 PRELIMINARIES

We assume that the reader is familiar with the language theory (see [3], [7]). For an alphabet, $V, \operatorname{card}(V)$ denotes the cardinality of $V . V^{*}$ represents the free monoid generated by V under the operation of concatenation. The unit of V^{*} is denoted by ε. Set $V^{+}=$ $V^{*}-\{\varepsilon\}$. For $w \in V^{*},|w|$ and alph (w) denote the length of w and the set of symbols occurring in w, respectively. For $L \subseteq V^{*}$, $\operatorname{alph}(L)=\{a: a \in \operatorname{alph}(w), w \in L\}$. For $w \in V^{*}$ and for $a \in V, \operatorname{occur}(w, a)$ denotes the number of occurrences of a in w. For $w \in V^{*}$, prefix (w) and $\operatorname{suffix}(w)$ denote the set of all w 's prefixes and suffixes, respectively. For $\left(w_{1}, \ldots, w_{n}\right) \in V_{1}^{*} \times \ldots \times V_{n}^{*}$, where V_{1}, \ldots, V_{n} are finite alphabets, concat $\left(\left(w_{1}, \ldots, w_{n}\right)\right)=$ $w_{1} \ldots w_{n}$.

A queue grammar (see [2]) is a sixtuple, $Q=(V, T, W, F, s, P)$, where V and W are alphabets satisfying $s \in V W, T \subseteq V, F \subseteq W, s \in(V-T)(W-F)$, and $P \subseteq(V \times(W-$ $F)) \times\left(V^{*} \times W\right)$ is a finite relation whose elements are called productions. For every $a \in V$, there exists a production $(a, b, x, c) \in P$. If $u, v \in V^{*} W$ such that $u=a r b, v=r x c, a \in V$, $r, x \in V^{*}, b, c \in W$, and $(a, b, x, c) \in P$, then $u \Rightarrow v[(a, b, x, c)]$ in G or, simply, $u \Rightarrow v$. In the standard manner, extend \Rightarrow to \Rightarrow^{n}, where $n \geq 0$; then, based on \Rightarrow^{n}, define \Rightarrow^{+}and \Rightarrow^{*}. The language of $Q, L(Q)$, is defined as $L(Q)=\left\{w \in T^{*}: s \Rightarrow^{*} w f\right.$ where $\left.f \in F\right\}$.

A left-extended queue grammar is a sixtuple, $Q=(V, T, W, F, s, P)$, where V, T, W, F, s, and P have the same meaning as in a queue grammar; in addition, assume that $\# \notin V \cup W$. If $u, v \in V^{*}\{\#\} V^{*} W$ so that $u=w \# a r b, v=w a \# r x c, a \in V, r, x, w \in V^{*}, b, c \in W$, and $(a, b, x, c) \in P$, then $u \Rightarrow v[(a, b, x, c)]$ in G or, simply, $u \Rightarrow v$. In the standard manner, extend \Rightarrow to \Rightarrow^{n}, where $n \geq 0$; then, based on \Rightarrow^{n}, define \Rightarrow^{+}and \Rightarrow^{*}. The language of $Q, L(Q)$, is defined as $L(Q)=\left\{v \in T^{*}: \# s \Rightarrow^{*} w \# v f\right.$ for some $w \in V^{*}$ and $\left.f \in V^{*}\right\}$.

3 DEFINITIONS

A bidirectional contextual grammar is a triple $G=\left(T \cup\{\$\}, P_{d} \cup P_{r}, S\right)$, where T is an alphabet, $\$$ a special symbol, $\$ \notin T, P \subseteq(T \cup\{\$\})^{*} \times(T \cup\{\$\})^{*}, P=P_{d} \cup P_{r}$, and S is a finite language over T. For every $x \in(T \cup\{\$\})^{*}$ and $(u, v) \in P_{d}$, write $x_{d} \Rightarrow u x v$, and for every $(u, v) \in P_{r}$, write $u x v r \Rightarrow x$; intuitively, d and r stand for a direct derivation and
a direct reduction, respectively. To express that G makes $x_{d} \Rightarrow u x v$ according to (u, v), write $x_{d} \Rightarrow u x v[(u, v)] ; u x v{ }_{r} \Rightarrow x[(u, v)]$ has an analogical meaning in terms of $r \Rightarrow$. Let $y, x \in(T \cup\{\$\})^{*}$. We say that G makes a direct computation of x from y, symbolically written as $y \Rightarrow x$, if either $y_{d} \Rightarrow x$ or $y_{r} \Rightarrow x$ in G. In the standard manner, extend \Rightarrow to \Rightarrow^{m}, where $m \geq 0$; then, based on \Rightarrow^{m}, define \Rightarrow^{+}and \Rightarrow^{*}. The $\$$-bounded language generated by $G,{ }_{\$} L(G)$, is defined as

$$
\$ L(G)=\left\{z: s \Rightarrow^{*} \$ z \$ \text { in } G, z \in T^{*}, s \in S\right\} .
$$

A computation of the form $s \Rightarrow^{*} \$ z \$$ in G, where $z \in T^{*}$ and $s \in S$, is said to be successful. Any two-step computation, $y \Rightarrow^{2} x$, where $y, x \in(T \cup\{\$\})^{*}$, represents a turn if $y \Rightarrow^{2} x$ is of the form $y_{d} \Rightarrow z_{r} \Rightarrow x$ or $y_{r} \Rightarrow z_{d} \Rightarrow x$, for some $z \in(T \cup\{\$\})^{*}$; less formally, the two-step computation $y \Rightarrow^{2} x$ consists of one direct derivation and one direct reduction. G is i-turn if any successful computation in G contains no more than i turns.

4 RESULTS

This section demonstrates that every recursively enumerable language is defined by a one-turn bidirectional contextual grammar.
Lemma 1. For every recursively enumerable language, L, there is a left-extended queue grammar, G, such that $L=L(G)$.

Proof. See Lemma 1 in [2].
Lemma 2. Let Q^{\prime} be a left-extended queue grammar. Then, there exists a left-extended queue grammar, $Q=(V, T, W, F, s, R)$, such that $L\left(Q^{\prime}\right)=L(Q), W=X \cup Y \cup\{1\}$, where $X, Y,\{1\}$ are pairwise disjoint, and every $(a, b, x, c) \in R$ satisfies either $a \in V-T, b \in X$, $x \in(V-T)^{*}, c \in X \cup\{1\}$ or $a \in V-T, b \in Y \cup\{1\}, x \in T^{*}, c \in Y$.

Proof. See Lemma 1 in [4].
Consider the left-extended queue grammar, $Q=(V, T, W, F, s, R)$, from Lemma 2. Its properties imply that Q generates every word in $L(Q)$ so that it passes through state 1 . Before it enters 1 , it generates only words over $V-T$; after entering 1 , it generates only words over T. In greater detail, the next corollary expresses this property, which fulfills a crucial role in the proof of Theorem 1.

Corollary 1. Q constructed in the proof of Lemma 2 generates every $h \in L(Q)$ in this way

$$
\begin{array}{lll}
& \# a_{0} q_{0} & {\left[\left(a_{0}, q_{0}, z_{0}, q_{1}\right)\right]} \\
\Rightarrow & a_{0} \# x_{0} q_{1} & {\left[\left(a_{1}, q_{1}, z_{1}, q_{2}\right)\right]} \\
\Rightarrow & a_{0} a_{1} \# x_{1} q_{2} & \\
& \vdots & {\left[\left(a_{k}, q_{k}, z_{k}, q_{k+1}\right)\right]} \\
\Rightarrow & a_{0} a_{1} \ldots a_{k} \# x_{k} q_{k+1} & {\left[\left(a_{k+1}, q_{k+1}, y_{1}, q_{k+2}\right)\right]} \\
\Rightarrow a_{0} a_{1} \ldots a_{k} a_{k+1} \# x_{k+1} y_{1} q_{k+2} & \\
& \vdots & \\
\Rightarrow & a_{0} a_{1} \ldots a_{k+m-1} \# x_{k+m-1} y_{1} \ldots y_{m-1} q_{k+m} & {\left[\left(a_{k+m-1}, q_{k+m-1}, y_{m-1}, q_{k+m}\right)\right]} \\
\Rightarrow & a_{0} a_{1} \ldots a_{k+m-1} a_{k+m} \# y_{1} \ldots y_{m} q_{k+m+1} & {\left[\left(a_{k+m}, q_{k+m}, y_{m}, q_{k+m+1}\right)\right]}
\end{array}
$$

where $k, m \geq 1, a_{i} \in V-T$ for $i=0, \ldots, k+m, x_{j} \in(V-T)^{*}$ for $j=1, \ldots, k+m, s=a_{0} q_{0}$, $a_{j} x_{j}=x_{j-1} z_{j}$ for $j=1, \ldots, k, a_{1} \ldots a_{k} x_{k}=z_{0} \ldots z_{k}, a_{k+1} \ldots a_{k+m}=x_{k}, q_{0}, q_{1}, \ldots, q_{k+m} \in$ $W-F$ and $q_{k+m+1} \in F, z_{0}, \ldots, z_{k} \in(V-T)^{*}, y_{1}, \ldots, y_{m} \in T^{*}, h=y_{1} y_{2} \ldots y_{m-1} y_{m}$.

Theorem 1. Let L be a recursively enumerable language. Then, there exists a one-turn bidirectional contextual grammar, G, such that $L={ }_{\$} L(G)$.

Proof. Let L be a recursively enumerable language. Let $Q=(V, T, W, F, s, R)$ be a leftextended queue grammar such that $L(Q)=L$ and Q satisfies the properties described in Lemma 2 and Corollary 1. Select a symbol, $o \in T$. Define the injection, α, from R to $\{o\}^{+}$so that α is an injective homomorphism when its domain is extended to R^{*}. Further, define the binary relation, f, over V so that $f(\varepsilon)=\varepsilon$ and $f(a)=\left\{\alpha\left(\left(a, b, c_{1} \ldots c_{n}, d\right)\right)\right.$: $\left.\left(a, b, c_{1} \ldots c_{n}, d\right) \in R\right\}$ for all $a \in V$. Similarly, define the binary relation, g, over W so that $g(b)=\left\{\alpha\left(\left(a, b, c_{1} \ldots c_{n}, d\right)\right):\left(a, b, c_{1} \ldots c_{n}, d\right) \in R\right\}$ for all $b \in W$. In the standard manner, extend the domain of f and g to V^{*} and W^{*}, respectively. Define the bidirectional contextual grammar,

$$
G=\left(T \cup\{\$\}, P_{d} \cup P_{r}, S\right),
$$

with

$$
\begin{aligned}
S= & \left\{c_{1} \ldots c_{n} \$ \alpha\left(\left(a, b, c_{1} \ldots c_{n}, d\right)\right):\left(a, b, c_{1} \ldots c_{n}, d\right) \in R, c_{1}, \ldots, c_{n} \in T\right. \\
& \text { for some } n \geq 0, d \in F\}
\end{aligned}
$$

and P_{d}, P_{r} constructed as follows:

1. For every $\left(a, b, c_{1} \ldots c_{n}, d\right) \in R, c_{1}, \ldots, c_{n} \in T$, for some $n \geq 0, d \in(W-F), \bar{d} \in g(d)$, add
$\left(c_{1} \ldots c_{n}, \$ \$ \bar{d} \$ \$ \alpha\left(\left(a, b, c_{1} \ldots c_{n}, d\right)\right)\right)$ to $P_{d} ;$
2. For every $\left(a, b, c_{1} \ldots c_{n}, d\right) \in R, c_{1}, \ldots, c_{n} \in(V-T)$, for some $n \geq 0, d \in(W-F)$, $\bar{c}_{1} \in f\left(c_{1}\right), \ldots, \bar{c}_{n} \in f\left(c_{n}\right), \bar{d} \in g(d)$, add
$\left(\bar{c}_{1} \$ \bar{c}_{2} \$ \ldots \bar{c}_{n} \$, \$ \$ \bar{d} \$ \$ \alpha\left(\left(a, b, c_{1} \ldots c_{n}, d\right)\right)\right)$ to P_{d};
3. For every $\bar{a}_{0} \in f\left(a_{0}\right), \bar{q}_{0} \in f\left(q_{0}\right)$ such that $s=a_{0} q_{0}$, add ($\$ \bar{a}_{0} \$, \$ \$ \bar{q}_{0} \$ \$$) to P_{d};
4. For every $r \in R$, add
$(\$ \alpha(r), \alpha(r) \$ \$ \alpha(r) \$ \$)$ to P_{r}.
Denote the set of productions introduced in step i of the construction by ${ }_{i} P_{d}$, for $1 \leq i \leq 3$.

BASIC IDEA:

Each simulation consists of two phases. In the first phase, the simulation of Q 's derivation is performed nondeterministically, and in the second phase, this simulation is verified. Next, we sketch both phases in greater detail.

Simulation phase G performs the simulation of Q in reverse. That is, the last derivation step in Q is simulated first in G, and the first step in Q is simulated last in G. In general, G keeps the binary code of the string over V that Q generates as a prefix of the current sentential form while keeping the binary code of states as its suffix. By a string from S, the Q 's production of the form $p_{0}:\left(a, b, c_{1} \ldots c_{n}, d\right), d \in F$ is simulated; it places $c_{1} \ldots c_{n}$ as the prefix and the p_{0} 's code as the suffix of the sentential form. Then, productions $p_{1}:\left(a, b, c_{1} \ldots c_{n}, d\right), c_{1}, \ldots, c_{n} \in T, d \in(W-F)$ are simulated by productions from ${ }_{1} P_{d}$. They place $c_{1} \ldots c_{n}$ as the prefix and the codes of d and p_{1} as the suffix of the sentential form. The suffix codes of the sentential form are always separated by $\$ \$$. Productions from ${ }_{2} P_{d}$ simulate productions $p_{2}:\left(a, b, c_{1} \ldots c_{n}, d\right), c_{1}, \ldots, c_{n} \in(V-T)$; they place codes of c_{1}, \ldots, c_{n} as the prefix and, again, d 's and p_{2} 's code as the suffix. The prefix codes are always separated by $\$$. Finally, by productions from ${ }_{3} P_{d}$, the axiom $s=a_{0} q_{0}$ from Q is simulated.

Verification phase During every step of the verification phase, G makes sure that the two suffix binary codes and the prefix binary code correspond to the same production in Q. If they do, all these three codes are removed from the sentential form. In this way, step by step, G verifies that the previously made simulation phase was performed properly.

Due to the requirements concerning the length of this paper, we omit the rigorous proof of the theorem above which is left to the reader.

REFERENCES

[1] Appelt, D. E.: Bidirectional grammars and the design of natural language generation systems, Proceedings of Third Conference on Theoretical Issues in Natural Language Processing (TINLAP-3), pages 185-191, Las Cruces, New Mexico, 1987.
[2] Kleijn, H. C. M., Rozenberg, G.: On the generative power of regular pattern grammars, Acta Informatica, 20:391-411, 1983.
[3] Meduna, A.: Automata and Languages: Theory and Applications, Springer-Verlag, London, 2000.
[4] Meduna, A.: Simultaneously one-turn two-pushdown automata, International Journal of Computer Mathematics, 80:679-687, 2003.
[5] Meduna, A.: Two-way metalinear pc grammar systems and their descriptional complexity, Acta Cybernetica, 16:385-397, 2004.
[6] Paun, G.:Marcus contextual grammars, Kluwer Academic Publishers, London, 1997.
[7] Rozenberg, G., Salomaa, A., editors: Handbook of Formal Languages, volume 1 through 3, Springer-Verlag, Berlin, 1997.
[8] Salomaa, A.: Formal Languages, Academic Press, New York, 1973.

