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ABSTRACT

In this paper, we give constructive prove that linear languages are closed under oper-
ations of regular deletion, and that they are not closed under operations of linear deletion.
The operations are called random parallel, parallel, sequential, scattered sequential, and
multiple scattered sequential deletion. In addition, we prove that the closure of linear lan-
guages under linear random parallel, parallel, or sequential deletion is the family of all
recursively enumerable languages. In the conclusion, we formulate two open problems.

1 INTRODUCTION

The language operations that delete some parts of strings play an important role in
modern informatics. So, it is no surprise that the formal language theory has payed a
special attention to their study (see [2, 4, 5]).

In this paper, we constructively prove that linear languages are closed under oper-
ations of regular random parallel, parallel, sequential, scattered sequential, and multiple
scattered sequential deletion, and that they are not closed under linear types of these op-
erations. We also prove that the closure of linear languages under linear random parallel,
parallel, or sequential deletion is the family of all recursively enumerable languages. In the
conclusion of this paper, we formulate two open problems.

2 PRELIMINARIES

In this paper, we assume that the reader is familiar with the formal language theory
(see [3]). Let RE, REC, CF , DCF , LIN, and REG denote the families of recursively enu-
merable, recursive, context-free, deterministic context-free, linear, and regular languages,
respectively.



3 DEFINITIONS AND EXAMPLES

Let L,K ⊆ Σ∗ be two languages.

Definition 3.1. Random Parallel Deletion of L and K is denoted by [⊥,L,K] and defined as
the set [⊥,L,K] = {u1u2 . . . unun+1 ∈ Σ∗ : u1x1u2 . . .unxnun+1 ∈ L, xi ∈K, 1≤ i≤ n, n≥ 1}.

Example 3.1. Let L = {abababa,aababa,abaabaaba} and K = {aba}.

• [⊥,{abababa},K] = {baba,abba,abab,b}.

• [⊥,{aababa},K] = {aba,aab}.

• [⊥,{abaabaaba},K] = {abaaba,aba,ε}.

• [⊥,L,K] = {baba,abba,abab,b,aba,aab,abaaba,ε}.

Definition 3.2. Parallel Deletion of L and K is denoted by [⊥a,L,K] and defined as the set
[⊥a,L,K] = {u1u2 . . .unun+1 ∈Σ∗ : u1x1u2 . . . unxnun+1 ∈ L, x j ∈K, {ui}∩Σ∗(K \{ε})Σ∗ =
/0, 1 ≤ i ≤ n+1, 1 ≤ j ≤ n, n ≥ 1}.

Example 3.2. Let L = {abababa,aababa,abaabaaba} and K = {aba}.

• [⊥a,{abababa},K] = {b,abba}.

• [⊥a,{aababa},K] = {aba,aab}.

• [⊥a,{abaabaaba},K] = {ε}.

• [⊥a,L,K] = {b,abba,aba,aab,ε}.

Definition 3.3. Sequential Deletion of L and K is denoted by [⊥1,L,K] and defined as the
set [⊥1,L,K] = {u1u2 ∈ Σ∗ : u1xu2 ∈ L, x ∈ K}.

Example 3.3. Let L = {abababa,ab,aba} and K = {aba}.

• [⊥1,{abababa},K] = {baba,abba,abab}.

• [⊥1,{ab},K] = /0.

• [⊥1,{aba},K] = {ε}.

• [⊥1,L,K] = {baba,abba,abab,ε}.

Definition 3.4. Scattered Sequential Deletion of L and K is denoted by [⊥1s,L,K] and
defined as the set [⊥1s,L,K] = {u1u2 . . .unun+1 ∈ Σ∗ : u1x1u2 . . .unxnun+1 ∈ L, x1x2 . . . xn ∈
K, n ≥ 1}.

Example 3.4. Let L = {abacba} and K = {ab,ca}.

• [⊥1s,{abacba},{ab}] = {acba,baca,abca}.

• [⊥1s,{abacba},{ca}] = {abab}.

• [⊥1s,{abacba},K] = {acba,baca,abca,abab}.



Definition 3.5. Multiple Scattered Sequential Deletion of L and K is denoted by [⊥s,L,K]
and defined as the set [⊥s,L,K] = {u1u2 . . .unun+1 ∈ Σ∗ : u1x1u2 . . .unxnun+1 ∈ L, x1x2 . . .
xn ∈ K+, n ≥ 1}.

Example 3.5. Let L = {abacba} and K = {ab,ca}.

• [⊥s,{abacba},{ab}] = {acba,baca,abca,ca}.

• [⊥s,{abacba},{ca}] = {abab}.

• [⊥s,{abacba},{ab,ca}] = {acba,baca,abca,ca,abab,ab}.

For any two families of languages X and Y denote by 〈x,X ,Y 〉 the set 〈x,X ,Y 〉 =
{[x,L,K] : L ∈ X , K ∈ Y }, where x ∈ {⊥,⊥a,⊥1,⊥1s,⊥s}.

4 RESULTS

Linear languages have been proved to be closed under operations of regular dele-
tion (see [4]). The proofs given there are not constructive. Because of limited space, we
describe only the constructions and omit the rigorous proofs.

Theorem 4.1. 〈x,LIN,REG〉= LIN, x ∈ {⊥,⊥1,⊥1s,⊥s}.

Proof. Let L ∈ LIN, then L = [x,L,{ε}] ∈ 〈x,LIN,REG〉, x ∈ {⊥,⊥1,⊥1s,⊥s}.
Let L ∈ LIN and K ∈ REG. Without loss of generality, there is a proper linear gram-

mar GL = (NL,ΣL,PL,SL) and a regular grammar GK = (NK,ΣK,PK,SK) such that SK does
not occur on the right-hand side of any rule, L = L(GL), and K = L(GK). (SK → ε is
the only possible ε-rule in GK .) Construct linear grammar G = (N,ΣL,P,S), where N =
{S}∪{〈x,B,y,U,V 〉 : x,y∈Σ∗L, |x|, |y| ≤max{|u|, |v| : A→ uBv∈PL}, B∈NL∪{ε}, U,V ∈
NK ∪{ε}}, and P contains rules of the following forms (depending on x):
x =⊥:

1) S → 〈ε,SL,ε,SK,ε〉
2) 〈ax,A,yb,U,ε〉 → 〈ax,A,y,U,ε〉b
3) 〈ax,A,yb,SK,V 〉 → a〈x,A,yb,SK,V 〉
4) 〈ax,A,yb,U,Y 〉 → 〈x,A,yb,V,Y 〉 if U → aV ∈ PK , V ∈ NK ∪{ε}
5) 〈ax,A,yb,U,Y 〉 → 〈ax,A,y,U,X〉 if X → bY ∈ PK , X ∈ NK
6) 〈ax,A,yb,U,SK〉 → 〈ax,A,y,U,SK〉b
7) 〈ax,A,yb,U,SK〉 → 〈ax,A,yb,U,ε〉
8) 〈ax,A,yb,ε,X〉 → a〈x,A,yb,ε,X〉
9) 〈ax,A,yb,ε,X〉 → 〈ax,A,yb,SK,X〉
10) 〈ε,A,ε,X ,Y 〉 → 〈x,B,y,X ,Y 〉 if A → xBy ∈ PL
11) 〈ε,ε,ε,X ,X〉 → ε

x =⊥1: We eliminate the rules allowing to delete more than one substring, i.e. rules of type
7 and 9.
x =⊥1s: In each state, we can either generate a next symbol or delete it.



1) S → 〈ε,SL,ε,SK,ε〉
2) 〈ax,A,yb,U,Y 〉 → a〈x,A,yb,U,Y 〉
3) 〈ax,A,yb,U,Y 〉 → 〈ax,A,y,U,Y 〉b
4) 〈ax,A,yb,U,Y 〉 → 〈x,A,yb,V,Y 〉 if U → aV ∈ PK , V ∈ NK ∪{ε}
5) 〈ax,A,yb,U,Y 〉 → 〈ax,A,y,U,X〉 if X → bY ∈ PK , X ∈ NK
6) 〈ε,A,ε,X ,Y 〉 → 〈x,B,y,X ,Y 〉 if A → xBy ∈ PL
7) 〈ε,ε,ε,X ,X〉 → ε

x =⊥s: As K+ is regular, for K regular, the proof is the same as for x =⊥1s.

Theorem 4.2. 〈⊥a,LIN,REG〉= LIN.

Proof. It is easy to see that LIN ⊆ 〈⊥a,LIN,REG〉.
Let L ∈ LIN and K ∈ REG. Without loss of generality, there is a proper linear gram-

mar GL = (NL,ΣL,PL,SL) and a regular grammar GK = (NK,ΣK,PK,SK) such that SK does
not occur on the right-hand side of any rule, L = L(GL), and K = L(GK). (SK → ε

is the only possible ε-rule in GK .) Construct linear grammar G = (N,ΣL,P,S), where
N = {S}∪{〈x,B,y,U,V,M,N〉 : x,y ∈ Σ∗L, |x|, |y| ≤max{|u|, |v| : A→ uBv ∈ PL}, B ∈ NL∪
{ε}, U,V ∈ NK ∪{ε}, M,N ⊆ NK ∪{ε}}, and P contains rules of the following forms:

1) S → 〈ε,SL,ε,SK,ε,{SK},{ε}〉
2) 〈ax,A,yb,U,ε,M,N〉 → 〈ax,A,y,U,ε,M,N′〉b if ε 6∈ M, SK 6∈ N, b ∈ ΣL
3) 〈ax,A,yb,SK,V,M,N〉 → a〈x,A,yb,SK,V,M′,N〉 if ε 6∈ M, SK 6∈ N, a ∈ ΣL
4) 〈ax,A,yb,U,Y,M,N〉 → 〈x,A,yb,V,Y,{SK},N〉 if ε 6∈ M, SK 6∈ N,

U → aV ∈ PK , V ∈ NK ∪{ε}
5) 〈ax,A,yb,U,Y,M,N〉 → 〈ax,A,y,U,X ,M,{ε}〉 if ε 6∈ M, SK 6∈ N,

X → bY ∈ PK , X ∈ NK
6) 〈ax,A,yb,U,SK,M,N〉 → 〈ax,A,y,U,SK,M,N′〉b if ε 6∈ M, SK 6∈ N, b ∈ ΣL
7) 〈ax,A,yb,U,SK,M,N〉 → 〈ax,A,yb,U,ε,M,N〉
8) 〈ax,A,yb,ε,X ,M,N〉 → a〈x,A,yb,ε,X ,M′,N〉 if ε 6∈ M, SK 6∈ N, a ∈ ΣL
9) 〈ax,A,yb,ε,X ,M,N〉 → 〈ax,A,yb,SK,X ,M,N〉
10) 〈ε,A,ε,X ,Y,M,N〉 → 〈x,B,y,X ,Y,M,N〉 if A → xBy ∈ PL, ε 6∈ M, SK 6∈ N
11) 〈ε,ε,ε,X ,X ,M,N〉 → ε if ε 6∈ M, SK 6∈ N

where M′ = {SK}∪{D ∈ NK ∪{ε} : A→ aD ∈ PK , A ∈M} and N′ = {ε}∪{D ∈ NK : D→
bC ∈ PK , C ∈ N}.

Now, we prove that the operations of linear deletion are very powerful—linear lan-
guages with the operation of linear deletion characterize recursively enumerable languages.

Theorem 4.3. 〈x,LIN,LIN〉= RE, x ∈ {⊥,⊥a,⊥1}.

Proof. It is not hard to construct a Turing machine accepting 〈x,LIN,LIN〉.
Now, suppose L ∈ RE, L ⊆ Σ∗, Σ = {a1, . . . ,an}. Extended Post correspondence

problem (EPCP), P, is a tuple P = ({(u1,v1), . . . ,(ur,vr)},(za1, . . . ,zan)), where ui,vi,za ∈
{0,1}∗ for i = 1, . . . ,r, and a ∈ Σ. The language represented by P is the set L(P) =
{x1x2 . . .xn ∈ Σ∗ : ∃s1, . . . ,sl ∈ {1, . . . ,r}, l ≥ 1, vs1 . . .vsl = us1 . . .usl zx1 . . .zxn}. For each
recursively enumerable language, L, there is an EPCP, P, such that L(P) = L (see [1, The-
orem 1]). Thus, x1x2 . . .xn ∈ L if and only if x1x2 . . .xn ∈ L(P). Generate x1x2 . . .xn as
follows:
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and x1x2 . . .xn ∈ L if and only if there are w1, w2 such that w1 = w2,

where zxi,us j ,vs j ∈ {0,1}∗, $,# 6∈ Σ∪{0,1}.

In addition, there is a linear grammar, G′, such that L(G′) = {$wR#w$ : w∈ {0,1}∗}. Thus,
L = [x,L(G),L(G′)], x ∈ {⊥,⊥a,⊥1}.

Theorem 4.4. REC ⊂ 〈x,LIN,LIN〉 ⊆ RE, x ∈ {⊥1s,⊥s}.

Proof. Let L be recursively enumerable language, L ⊆ Σ∗, Σ∩{0,1} = /0. The proof fol-
lows from Theorem 4.3 because L = [x,L(G),L(G′)]∩Σ∗. If [x,L(G),L(G′)] is recursive,
then so is L. Therefore, for L ∈ RE −REC the language [x,L(G),L(G′)] is not recursive
language.

5 OPEN PROBLEMS

Here we summarize two open problems:

1. Is it true that 〈⊥1s,LIN,LIN〉= RE?

2. Is it true that 〈⊥s,LIN,LIN〉= RE?
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