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ABSTRACT

This paper presents new models for all recursiveramable languages. These models
are based on multigenerative grammar systems ithattaneously generate several strings in
a parallel way. The components of these modelscantext-free grammars, working in a
leftmost way. The rewritten nonterminals are deteed by a finite set of nonterminal
sequences.

1 INTRODUCTION

The formal language theory has recently intensivialyestigated various grammar
systems (see [1], [2], [8]), which consist of selecooperating components, usually
represented by grammars. Although this variaty xfreenely broad, all these grammar
systems always make a derivation that generat@sgée string. In this paper, however, we
introduce grammar systems that simultaneously gémeseveral strings, which are
subsequently composed in a single string by somanun string operation, such as
concatenation.

More precisely, for a positive integerann-multigenerative grammar system discussed
in this paper works with context-free grammatical components in a leftreesf] that is, in
every derivation step, each of these componentstesathe leftmost nonterminal occurring
in its current sentential form. These leftmost derivations are controledtuples of
nonterminals or rules. Under a control like thisg grammar system generatestrings, out
of which the strings that belong to the generaé@gililage are made by some basic operations.
Specifically, these operations include union, ctewation and a selection of the string
generated by the first component.

In this paper, we prove that all the multigenemtiyrammar systems under discussion
characterize the family of recursively enumerablegliages. Besides this fundamental result,
we give several transformation algorithms of thesdtigenerative grammar systems.

2 PRELIMINARIES

This paper assumes that the reader is familiar thighformal language theory (see [4]).



For a setQ, card(Q) denotes the cardinality @. For an alphabeV, V' represents the free
monoid generated by under the operation of concatenation. The unk o denoted by.
SetV' = V' — {g}; algebraically,V" is thus the free semigroup generated\bynder the
operation of concatenation. For every] V', | denotes the length of

A context-free grammar is a quadrupleG = (N, T, P, S), whereN andT are two disjoint
alphabets. Symbols N andT are referred to asonterminals andterminals, respectively, and
SO N is thestart symbol of G. P is a finite set ofules of the formA - x, whereA [l N andx
O(NOT)". To declare that a labeldenotes the rule, this is writtenmsA — x. For everyA
~ xOPandu,vO (N O7), writeuAv = uxv. Let=" denote the transitive-reflexive closure
of =. Thelanguage of G, L(G), is defined a&(G) = {w: S=" win G, for somew O T }.

3 DEFINITIONS
Definition 3.1: An n-multigenerative nonterminal-synchronized grammar system (n-MGN) is
ann+1 tuple,

M= (G]_, Gz, caay Gn, Q),

whereG; = (N;, Ti, Pi, §) is a context-free grammar for each 1, ...,n, andQ is a finite set
of n-tuples of the formAqy, A, ..., An), whereA O N; foralli =1, ...,n. Letl' = (Gy, G, ...,
Gn, Q) be an n-MGN. Then, sentential n-form of n-MGN is ann-tuple of the formy = (x,
Xo, ..., Xn), Wherex; O (N, O T,) foralli =1, ...,n. LetX = (UsAwV1, UpAoVa, ..., UnAnV,) and ¥
= (UpXaVa, UpXoVa, ..., UnXaVi) be two sententiad-form, whereA O N, u O T, andvi, x; O (N;
O Ti)* foralli=1, ...,n. LetA - x OP;foralli=1, ...,nand @, Ay, ..., A, O Q. Theny
directly derivesy in ", denoted by = % . In the standard way, we generalizeto = k =
0,=", and=". Then-language of I', n-L(I"), is defined as

n-L(M) = {(wi, Wo, ..., Wo): (S, S .o, S) = (Wi, W, ..o, Wo), Wi O T foralli =1, ...,n}.
Thelanguage generated by I in the union mode, Lnion(I), is defined as
Lunion(T) = {W: (W, Wo, ..., wWy) O n-L(T), w O{w;:i =1, ...,n}}.
Thelanguage generated by I' in the concatenation mode, Leonc(), is defined as
Leoonc(l) = {WiWa... Wi (Wq, Wo, ..., W,) O n-L(MN)}
Thelanguage generated by I in the first mode, Ls:«(I"), is defined as
Larg(M) = {wa: (Wy, Wo, ..., wWy) O n-L(1M)}

Example: = (G]_, G,, Q), whereG; = ({Sl, Al}, {a, b, C}, {Sl -~ aS, S - aA;, Ay —» bAC,
AL - b}, S),G=({S AL {dL{S - SA S - Ay A - 0}, S), Q={(S1, S), (A1, A)}
is a 2-multigenerative nonterminal-synchronizedngrear system. Notice that lAF) =
{(a"0"c", d): n = 1}, Lynion(lN) = {a"b"c: n> 1} O {d™ n = 1}, Leone(lN) = {a"b"c"d™ n = 1},
andLsg(M) = {a"b"c™ n> 1}.

Definition 3.2: An n-multigenerative rule-synchronized grammar system (n-MGR) is n+1
tuple

=Gy, Gy ..., Gy, Q)



whereG; = (N;, Ti, P;, §) is a context-free grammar for each 1, ...,n, andQ is a finite set
of n-tuples of the formg, p2, ..., pn), Wherep; O P, for alli = 1, ...,n. A sententiah-form
for n-MGR is defined as the sententielorm for an n-MGN. Lel = (G, G, ..., Gy, Q) be
an N-MGR. Letx = (U1A1V1, UpAV2, ..., UAVL) and y = (UpXgVa, UpXoVe, ..., UnXaVp) are two
sententiah-form, whereA ON,, 4 O T, andv;, x O (N; O T)) foralli = 1, ...,n. Letpi: A

- X OPjforalli =1, ...,nand @4, p2, ..., pn) O Q. Theny directly derivesy in I, denoted
by x = % . Ann-language for any n-MGR is defined as thlanguage for any n-MGN, and a

language generated by n-MGN in thenode, for eaclX [J {union, conc, first}, is defined as
the language generated by n-MGR in Xheode.

Example: ' = (Gy, Gy, Q), whereGy = ({S, A}, {a, b, ¢}, {1: S - aS,2: § - aA, 3 A
- bAC, 4 A - b}, §), G = (S {d {11 S - 5525 - 53 % -d,S),0=
{(1,1), 2 2), 3, 3), (4, 3}, is 2-multigenerative rule-synchronized grammar exystNotice
that 24.(M) = {(a"c", d"): n = 1}, Luyion(T) = {@0"c™ n = 1} O {d™ n = 1}, Leone(l) =
{a""c"d" n> 1}, andLg¢(I) = {@"c™ n> 1}.

4 RESULTS

Algorithm 4.1: Conversion of n-MGN to n-MGR
e Input: n-MGNT = (Gy, G, ...,Gp, Q)
« Output: n-MGRT = (Gy, Gy, ...,Gn, Q); n-L(MN) =n-L(T)
* Method:
LetG =(N;, T;, P, S) foralli =1, ...,n, then:

Q:={(A1 - X, A2 > X2, ..., Ay - X): A - x OP;foralli =1, ...,n, and
A A, . AN OQY
Algorithm 4.2: Conversion of n-MGR to n-MGN

« Input: -MGRT = (G, Gy, ..., Gy, Q)
« Output: -MGNT =(G,,G,, ..., G,, Q); n-L(I") =n-L(T)
* Method:

LetGi=(N;, Ti, P, §) foralli =1, ...,n, then:

G =(N,, T, P,S)foralli=1, ...,n, where:

N ={<A x>:A - xOP} O{S},

> ={<A x> - Y A xUOP,yO ni¥)} O{S - y:yd ri(S)}
wherer is a substitution fror; 0 T to N; 0 T; defined as:
r(a)={a}forall alT; 5(A) = {<A x>: A - xOP;}forall AON..
Q = {(<AL X1>, <Ag, X2>, ..vy Ay, X>): (AL — X1, Ao = X, oo, An = X)) 0 Q}
0 {(S, S ... S}



Claim 4.3: Let T be any n-MGN, lef” be any n-MGR and let-L(") = n-L(T ). Then,Lx(I)
= Lx(T), for eachX O {union, conc, first}.

Proof:

l. We prove that ynion(”) = Lunion(T ): Lunion(T) = {W: (Wi, Wa, ..., Wy) O n-L(F), w C{ wi: i
1, ...,n}} = {w: Wy, Wo, ...,wr) O n-L(T),w{w:i=1,..n}}= Luion(T).

” We pI’OVG thaﬂ_conc(r) = Lconc(r): Lconc(r)_: {W]_WZWn (W]_, W2, sy Wn) I:] n'L(r)}
{WAW,. . Wit (W, Wa, ..., W) O n-L(T )} = Leone(T).

l1. We prove thatlsis(I) = Lars(T ) Lairg(T) = {wa: (Wi, Wo, ..., W) O n-L(M)} = {wq: (wy,
W, ..., W) O n-L(T )} = Lerg(T).

Corollary 4.4: The class of languages generated by n-MGN irXtheode, whereX [ {union,
cong, first} is equivalent with the class of language genelrégen-MGR in theX mode.

Proof: This corollary follows from Algorithm 4.1, Algorith 4.2 and Claim 4.3.

Theorem 4.5: For every recursive enumerable languagever an alphabék there exists a 2-
MGR,I =((N,, T, B, S), (N,, T, P, $), Q) such that:

) {w (S, 9= (ww} =L,

2) {wiwz: (S, ) = (W, wo), W, wo O T, wy 2w} = O.
Proof: Recall that for every recursive enumerable langlageer an alphabdt there exist
two context-free grammaf@; = (N, T, P13, S1), Go = (No, T, P2, ) and homomorphisrh:
from T toT such that = {h(x) : x O L(G1) n L(Gy)}. (see Theorem 10.3.1 in [3]).
Furthermore, for every context-free grammar, tlexists an equivalent context-free grammar
in Greibach normal form (see Section 5.1.4.2 if.[AEence, without lost of generality, we

can assume th&; andG; are in Greibach normal form. Construct a 2-MGR (G, G, Q),
where:

Gi=(N., T, P,S), whereN,=N; O0{a:al0T}, BR={A- ax:A-ax0OP,alT,
xON;}YO{a - h@:adT}

G,=(N,,T, P, S),whereN, =N, O{a:al0T}, RL={A- ax:A- axOP,alT,
xON;}YO{a - h@:adT}

Q:{(A1—> 5)(1,A2—> aXz):A]_—» ﬁxlﬂ 51! Ay - ax, DE,&DT}D{(@ - h(a), a -
h(@):ad T}

Theorem 4.6: For every recursive enumerable languagever an alphabéek there exists a 2-
MGR, ' = (G4, Gy, Q) such thatL ynion(I") = L.

Proof: Letl = T, wherel = (N, T, P1, 1), (N2, T, P2, S), Q) is a MGR from Theorem 4.5.
Then, Luion(D) = {wW: (S, $) = (Wy, W), O T fori =1, 2w O {w:i=1, 2} ={w: (S,
S) =" (W, w),wOT} O{w: (S, )= Wi, wo),wOT fori=1,2wO{w:i=1,2}w#
Wt ={w: (S, ) = (W,w),wOT}OO={w: (S, )= (w,w),wOT}=L

Theorem 4.7: For every recursive enumerable languagever an alphabéf there exists a 2-
MGR, T = (G, Gy, Q) such thatLg,«(I") = L.

Proof: Letl =T , wherel = (N, T, P, S), (N2, T, P2, S), Q) is a MGR from Theorem 4.5.



Then,Lare(T) = {Wa: (S, ©) = (Wi, Wo), W O T fori =1, 2} = {w: (S, ) = (w, w), wO
TY O{we (S1.S) = Wi, W), wOT fori=1, 2w #wa} = {w: (S, $) = (W, w), wD
TIOO ={w: (S, 9 =" (w,w),wOT}=L.

Theorem 4.8: For every recursive enumerable langubhgerer an alphabék there exists a 2-
MGR, r = (G]_, Gz, Q) SUCh thathonc(r) = L.

Proof: Let T = ((N1, T, P1, S1), (N2, T, P2, S), Q) be a MGR from Theorem 4.5. L& = (N,
T, P, S), G =Nz O, P, S), whereP, = {A - g(X): A -~ x 0 P2}, whereg is a
homomorphism fromN, [ T) to N, defined as: For alK O N,: g(X) =X, for all X O T: g(X) =
€. We prove thakcone(l") = L.

I. We prove that O Leone(I): Letw O L. Then, there exists a sequence of derivation in
T (S, S) = (w, w), thus, there exist a sequence of derivations {8, &) = (w, g(w)).
Becausey(a) = € for alla O T, theng(w) = € for allw O T . Thus, there exists a sequence of
derivations &, &) = (w, €) in . Hencewe =w O Leone(l).

[I. We prove thatLeonc(I’) O L: Let w O Leone(I'). Then, there exist a sequence of
derivations &, $) = (W, €) in I', becauses, derives only empty stringy(X) = € for all x O
T, so there exists a sequence of derivatiof inf the form: &, $) = (w, X), wherex is any
string. Theorem 4.5 implies that w, thus: &, $) = (w, w). Thus,w O L.

5 CONCLUSION

Let L(2-MGNx) andL(2-MGRy) denote the language families defined by 2-MGhim
X mode and 2-MGR in th¥ mode, respectively, whede [ {union, conc, first}, let L(RE)
denote the family of recursive enumerable languagesm the previous results, we obtain
L(RE) =L(MGNy) = L(MGRY).
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