

POWER OF MULTIGENERATIVE GRAMMAR SYSTEMS

Ing. Roman LUKÁŠ, Doctoral Degree Programme (3)
Dept. of Information Systems, FIT, BUT

E-mail: lukas@fit.vutbr.cz

Supervised by: Prof. Alexander Meduna

ABSTRACT

This paper presents new models for all recursive enumerable languages. These models
are based on multigenerative grammar systems that simultaneously generate several strings in
a parallel way. The components of these models are context-free grammars, working in a
leftmost way. The rewritten nonterminals are determined by a finite set of nonterminal
sequences.

1 INTRODUCTION

The formal language theory has recently intensively investigated various grammar
systems (see [1], [2], [8]), which consist of several cooperating components, usually
represented by grammars. Although this variaty is extremely broad, all these grammar
systems always make a derivation that generates a single string. In this paper, however, we
introduce grammar systems that simultaneously generate several strings, which are
subsequently composed in a single string by some common string operation, such as
concatenation.

More precisely, for a positive integer n, an n-multigenerative grammar system discussed
in this paper works with n context-free grammatical components in a leftmost waythat is, in
every derivation step, each of these components rewrites the leftmost nonterminal occurring
in its current sentential form. These n leftmost derivations are controled n-tuples of
nonterminals or rules. Under a control like this, the grammar system generates n strings, out
of which the strings that belong to the generated language are made by some basic operations.
Specifically, these operations include union, concatenation and a selection of the string
generated by the first component.

In this paper, we prove that all the multigenerative grammar systems under discussion
characterize the family of recursively enumerable languages. Besides this fundamental result,
we give several transformation algorithms of these multigenerative grammar systems.

2 PRELIMINARIES

This paper assumes that the reader is familiar with the formal language theory (see [4]).

For a set, Q, card(Q) denotes the cardinality of Q. For an alphabet, V, V* represents the free
monoid generated by V under the operation of concatenation. The unit of V* is denoted by ε.
Set V+ = V* – {ε}; algebraically, V+ is thus the free semigroup generated by V under the
operation of concatenation. For every w ∈ V*, |w| denotes the length of w.

A context-free grammar is a quadruple, G = (N, T, P, S), where N and T are two disjoint
alphabets. Symbols in N and T are referred to as nonterminals and terminals, respectively, and
S ∈ N is the start symbol of G. P is a finite set of rules of the form A → x, where A ∈ N and x

∈ (N ∪ T)*. To declare that a label r denotes the rule, this is written as r: A → x. For every A
→ x ∈ P and u, v ∈ (Ν ∪Τ)*, write uAv ⇒ uxv. Let ⇒* denote the transitive-reflexive closure
of ⇒. The language of G, L(G), is defined as L(G) = {w: S ⇒* w in G, for some w ∈ T*}.

3 DEFINITIONS

Definition 3.1: An n-multigenerative nonterminal-synchronized grammar system (n-MGN) is
an n+1 tuple,

Γ = (G1, G2, …, Gn, Q),

where Gi = (Ni, Ti, Pi, Si) is a context-free grammar for each i = 1, …, n, and Q is a finite set
of n-tuples of the form (A1, A2, …, An), where Ai ∈ Ni for all i = 1, …, n. Let Γ = (G1, G2, …,
Gn, Q) be an n-MGN. Then, a sentential n-form of n-MGN is an n-tuple of the form χ = (x1,
x2, …, xn), where xi ∈ (Ni ∪ Ti)

* for all i = 1, …, n. Let χ = (u1A1v1, u2A2v2, …, unAnvn) and χ

= (u1x1v1, u2x2v2, …, unxnvn) be two sentential n-form, where Ai ∈ Ni, ui ∈ Ti
*, and vi, xi ∈ (Ni

∪ Ti)
* for all i = 1, …, n. Let Ai → xi ∈ Pi for all i = 1, …, n and (A1, A2, …, An) ∈ Q. Then χ

directly derives χ in Γ, denoted by χ ⇒ χ . In the standard way, we generalize ⇒ to ⇒k, k ≥

0, ⇒+, and ⇒*. The n-language of Γ, n-L(Γ), is defined as

n-L(Γ) = {(w1, w2, …, wn): (S1, S2, …, Sn) ⇒
* (w1, w2, …, wn), wi ∈ Ti

* for all i = 1, …, n}.

The language generated by Γ in the union mode, Lunion(Γ), is defined as

Lunion(Γ) = {w: (w1, w2, …, wn) ∈ n-L(Γ), w ∈{ wi: i = 1, …, n}}.

The language generated by Γ in the concatenation mode, Lconc(Γ), is defined as

Lconc(Γ) = {w1w2…wn: (w1, w2, …, wn) ∈ n-L(Γ)}

The language generated by Γ in the first mode, Lfirst(Γ), is defined as

Lfirst(Γ) = {w1: (w1, w2, …, wn) ∈ n-L(Γ)}

Example: Γ = (G1, G2, Q), where G1 = ({S1, A1}, { a, b, c}, { S1 → aS1, S1 → aA1, A1 → bA1c,
A1 → bc}, S1), G2 = ({S2, A2}, { d}, { S2 → S2A2, S2 → A2, A2 → d}, S2), Q = {(S1, S2), (A1, A2)}
is a 2-multigenerative nonterminal-synchronized grammar system. Notice that 2-L(Γ) =
{(anbncn, dn): n ≥ 1}, Lunion(Γ) = {anbncn: n ≥ 1} ∪ {dn: n ≥ 1}, Lconc(Γ) = {anbncndn: n ≥ 1},
and Lfirst(Γ) = {anbncn: n ≥ 1}.

Definition 3.2: An n-multigenerative rule-synchronized grammar system (n-MGR) is n+1
tuple

Γ = (G1, G2, …, Gn, Q),

where Gi = (Ni, Ti, Pi, Si) is a context-free grammar for each i = 1, …, n, and Q is a finite set
of n-tuples of the form (p1, p2, …, pn), where pi ∈ Pi for all i = 1, …, n. A sentential n-form
for n-MGR is defined as the sentential n-form for an n-MGN. Let Γ = (G1, G2, …, Gn, Q) be
an n-MGR. Let χ = (u1A1v1, u2A2v2, …, unAnvn) and χ = (u1x1v1, u2x2v2, …, unxnvn) are two

sentential n-form, where Ai ∈ Ni, ui ∈ Ti
*, and vi, xi ∈ (Ni ∪ Ti)

* for all i = 1, …, n. Let pi: Ai
→ xi ∈ Pi for all i = 1, …, n and (p1, p2, …, pn) ∈ Q. Then χ directly derives χ in Γ, denoted

by χ ⇒ χ . An n-language for any n-MGR is defined as the n-language for any n-MGN, and a

language generated by n-MGN in the X mode, for each X ∈ {union, conc, first}, is defined as
the language generated by n-MGR in the X mode.

Example: Γ = (G1, G2, Q), where G1 = ({S1, A1}, { a, b, c}, { 1: S1 → aS1, 2: S1 → aA1, 3: A1
→ bA1c, 4: A1 → bc}, S1), G2 = ({S2}, { d}, { 1: S2 → S2S2, 2: S2 → S2, 3: S2 → d}, S2), Q =
{(1, 1), (2, 2), (3, 3), (4, 3)}, is 2-multigenerative rule-synchronized grammar system. Notice
that 2-L(Γ) = {(anbncn, dn): n ≥ 1}, Lunion(Γ) = {anbncn: n ≥ 1} ∪ {dn: n ≥ 1}, Lconc(Γ) =
{ anbncndn: n ≥ 1}, and Lfirst(Γ) = {anbncn: n ≥ 1}.

4 RESULTS

Algorithm 4.1: Conversion of n-MGN to n-MGR

• Input: n-MGN Γ = (G1, G2, …, Gn, Q)

• Output: n-MGR Γ = (G1, G2, …, Gn, Q); n-L(Γ) = n-L(Γ)

• Method:

Let Gi = (Ni, Ti, Pi, Si) for all i = 1, …, n, then:

Q := {(A1 → x1, A2 → x2, …, An → xn): Ai → xi ∈ Pi for all i = 1, …, n, and

 (A1, A2, …, An) ∈ Q }

Algorithm 4.2: Conversion of n-MGR to n-MGN

• Input: n-MGR Γ = (G1, G2, …, Gn, Q)

• Output: n-MGN Γ = (1G , 2G , …, nG , Q); n-L(Γ) = n-L(Γ)

• Method:

Let Gi = (Ni, Ti, Pi, Si) for all i = 1, …, n, then:

iG = (iN , Ti, iP , Si) for all i = 1, …, n, where:

iN := {<A, x>: A → x ∈ Pi} ∪ {Si},

iP := {<A, x> → y: A → x ∈ Pi, y ∈ τ i(x)} ∪ {Si → y: y ∈ τ i(Si)},

where τi is a substitution from Ni ∪ Ti to iN ∪ Ti defined as:

τi(a) = {a} for all a ∈ Ti; τi(A) = {<A, x>: A → x ∈ Pi} for all A ∈ Ni.

Q := {(<A1, x1>, <A2, x2>, …, <An, xn>): (A1 → x1, A2 → x2, …, An → xn) ∈ Q}

 ∪ {(S1, S2, …, Sn)}

Claim 4.3: Let Γ be any n-MGN, let Γ be any n-MGR and let n-L(Γ) = n-L(Γ). Then, LX(Γ)
= LX(Γ), for each X ∈ {union, conc, first}.

Proof:

I. We prove that Lunion(Γ) = Lunion(Γ): Lunion(Γ) = {w: (w1, w2, …, wn) ∈ n-L(Γ), w ∈{ wi: i =
1, …, n}} = { w: (w1, w2, …, wn) ∈ n-L(Γ), w ∈{ wi: i = 1, …, n}} = Lunion(Γ).

II. We prove that Lconc(Γ) = Lconc(Γ): Lconc(Γ) = {w1w2…wn: (w1, w2, …, wn) ∈ n-L(Γ)} =
{ w1w2…wn: (w1, w2, …, wn) ∈ n-L(Γ)} = Lconc(Γ).

III. We prove that Lfirst(Γ) = Lfirst(Γ): Lfirst(Γ) = {w1: (w1, w2, …, wn) ∈ n-L(Γ)} = { w1: (w1,

w2, …, wn) ∈ n-L(Γ)} = Lfirst(Γ).

Corollary 4.4: The class of languages generated by n-MGN in the X mode, where X ∈ {union,
conc, first} is equivalent with the class of language generated by n-MGR in the X mode.

Proof: This corollary follows from Algorithm 4.1, Algorithm 4.2 and Claim 4.3.

Theorem 4.5: For every recursive enumerable language L over an alphabet T there exists a 2-
MGR, Γ = ((1N , T, 1P , S1), (2N , T, 2P , S2), Q) such that:

1) { w: (S1, S2) ⇒
* (w, w)} = L,

2) { w1w2: (S1, S2) ⇒
* (w1, w2), w1, w2 ∈ T*, w1 ≠ w2} = ∅.

Proof: Recall that for every recursive enumerable language L over an alphabet T there exist
two context-free grammars G1 = (N1, T , P1, S1), G2 = (N2, T , P2, S2) and homomorphism h:
from T to T* such that L = {h(x) : x ∈ L(G1) ∩ L(G2)}. (see Theorem 10.3.1 in [3]).
Furthermore, for every context-free grammar, there exists an equivalent context-free grammar
in Greibach normal form (see Section 5.1.4.2 in [4]). Hence, without lost of generality, we
can assume that G1 and G2 are in Greibach normal form. Construct a 2-MGR Γ = (G1, G2, Q),
where:
G1 = (1N , T, 1P , S1), where 1N = N1 ∪ { a : a ∈ T }, 1P = { A → xa : A → ax ∈ P1, a ∈ T ,

x ∈ N1
*} ∪ { a → h(a): a ∈ T }

G2 = (2N , T, 2P , S2), where 2N = N2 ∪ { a : a ∈ T }, 2P = { A → xa : A → ax ∈ P2, a ∈ T ,

x ∈ N2
*} ∪ { a → h(a): a ∈ T }

Q = {(A1 → 1xa , A2 → 2xa): A1 → 1xa ∈ 1P , A2 → 2xa ∈ 2P , a ∈ T } ∪ {(a → h(a), a →

h(a)): a ∈ T }

Theorem 4.6: For every recursive enumerable language L over an alphabet T there exists a 2-
MGR, Γ = (G1, G2, Q) such that: Lunion(Γ) = L.

Proof: Let Γ = Γ , where Γ = ((N1, T, P1, S1), (N2, T, P2, S2), Q) is a MGR from Theorem 4.5.
Then, Lunion(Γ) = {w: (S1, S2) ⇒

* (w1, w2), wi ∈ T* for i = 1, 2, w ∈ {wi: i = 1, 2}} = {w: (S1,
S2) ⇒

* (w, w), w ∈ T*} ∪ {w: (S1, S2) ⇒
* (w1, w2), wi ∈ T* for i = 1, 2, w ∈ {wi: i = 1, 2}, w1 ≠

w2} = { w: (S1, S2) ⇒
* (w, w), w ∈ T*} ∪ ∅ = {w: (S1, S2) ⇒

* (w, w), w ∈ T*} = L

Theorem 4.7: For every recursive enumerable language L over an alphabet T there exists a 2-
MGR, Γ = (G1, G2, Q) such that: Lfirst(Γ) = L.

Proof: Let Γ = Γ , where Γ = ((N1, T, P1, S1), (N2, T, P2, S2), Q) is a MGR from Theorem 4.5.

Then, Lfirst(Γ) = {w1: (S1, S2) ⇒
* (w1, w2), wi ∈ T* for i = 1, 2} = {w: (S1, S2) ⇒

* (w, w), w ∈
T*} ∪ {w1: (S1, S2) ⇒

* (w1, w2), wi ∈ T* for i = 1, 2, w1 ≠ w2} = { w: (S1, S2) ⇒
* (w, w), w ∈

T*} ∪ ∅ = {w: (S1, S2) ⇒
* (w, w), w ∈ T*} = L.

Theorem 4.8: For every recursive enumerable language L over an alphabet T there exists a 2-
MGR, Γ = (G1, G2, Q) such that: Lconc(Γ) = L.

Proof: Let Γ = ((N1, T, P1, S1), (N2, T, P2, S2), Q) be a MGR from Theorem 4.5. Let G1 = (N1,
T, P1, S1), G2 = (N2, ∅, 2P , S2), where 2P = {A → g(x): A → x ∈ P2}, where g is a

homomorphism from (N2 ∪ T) to N2 defined as: For all X ∈ N2: g(X) = X, for all X ∈ T: g(X) =
ε. We prove that Lconc(Γ) = L.

I. We prove that L ⊆ Lconc(Γ): Let w ∈ L. Then, there exists a sequence of derivation in
Γ (S1, S2) ⇒

* (w, w), thus, there exist a sequence of derivations in Γ (S1, S2) ⇒
* (w, g(w)).

Because g(a) = ε for all a ∈ T, then g(w) = ε for all w ∈ T*. Thus, there exists a sequence of
derivations (S1, S2) ⇒

* (w, ε) in Γ. Hence, wε = w ∈ Lconc(Γ).

II. We prove that Lconc(Γ) ⊆ L: Let w ∈ Lconc(Γ). Then, there exist a sequence of
derivations (S1, S2) ⇒

* (w, ε) in Γ, because G2 derives only empty string. g(x) = ε for all x ∈
T*, so there exists a sequence of derivation in Γ of the form: (S1, S2) ⇒

* (w, x), where x is any
string. Theorem 4.5 implies that x = w, thus: (S1, S2) ⇒

* (w, w). Thus, w ∈ L.

5 CONCLUSION

Let L(2-MGNX) and L(2-MGRX) denote the language families defined by 2-MGN in the
X mode and 2-MGR in the X mode, respectively, where X ∈ {union, conc, first}, let L(RE)
denote the family of recursive enumerable languages. From the previous results, we obtain
L(RE) = L(MGNX) = L(MGRX).

REFERENCES

[1] Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, Gh.: Grammar Systems: A Grammatical
Approach to Distribution and Cooperation, Gordon and Breach, London, 1994

[2] Dassow, J., Paun, Gh., Rozenberg, G.: Grammar Systems, In Handbook of Formal
Languages, Rozenberg, G. and Salomaa, A. (eds.), Volumes 2, Springer, Berlin, 1997.

[3] Harrison, Michael A.: Introduction to Formal Language Theory. Addison-Wesley,
London, 1978.

[4] Meduna, A.: Automata and Languages: Theory and Applications, Springer, London, 2000

[5] Meduna, A.: Two-Way Metalinear PC Grammar Systems and Their Descriptional
Complexity, Acta Cybernetica, 2003

[6] Paun, Gh., Salomaa, A. and S. Vicolov, S.: On the generative capacity of parallel
communicating grammar systems. International Journal of Computer Mathematics 45, 45-
59, 1992.

[7] Salomaa, A.: Formal Languages, Academic Press, New York, 1973.

[8] Vaszil, G.: On simulating Non-returning PC grammar systems with returning systems,
Theoretical Computer Science (209) 1-2, 319-329, 1998.

