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ABSTRACT 

This work describes a framework for vision based human detection, tracking, pose 
recognition and behavior discovery in a uniform manner of Bayesian classifiers. It considers 
mathematical concept of identification by classification of preprocessed images and 
regression of poses for discovering behavior patterns in its databases using Bayes’ nets. 

1 INTRODUCTION 

The main reason why to use probabilistic modeling for identification is the need for 
unified mathematic formulation in different areas. We concern classification of hidden 
parameters, which is affected by information loss, illumination noise and segmentation errors 
what can be understood as a noise in a communication channel in figure 1. 
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Fig. 1: Scene description as a channel (from [2]) 

The visual information  and included prior knowledge of the sensed world are the 
main resources of considered application. The image acquisition and preprocessing is 
followed by the object recognition and its’ pose estimation. Also these techniques may 
misclassify sensed objects due to incompleteness or occlusions. Poses and tracks are stored in 
database. Mining these spatio-temporal data provides useful information about sensed world 
and can influence other modules of the vision system by discovering frequent patterns of 
behavior used than as a posterior to prior knowledge feedback. 

2 COMMON BASE 

The probability of any event is the ratio between the value at which an expectation 
depending on the happening of the event ought to be computed, and the chance of the thing 
expected upon sic (it's) happening. (from [6]) 



  

The Bayes’ definition of probability looks limited nowadays because assumes only the 
extent of observable consequences. But it is well suitable for us. Consider following system: 
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Fig. 2: Parameter estimation system 

In figure 2 parameter x ∈ X = {x1, x2, … xk} is a hidden state or class that cannot be 
observed directly, y ⊆ Y = {y1, y2, … yn} is an observation, information we can get about real 
world. In computer vision it is usually a result of preprocessing and segmentation of sensor 
data, represented by function h(x), the encoder. For instance if x is an apple, y = h(x) could be 
(round, red). We cannot be sure because the channel is encumbered by a white noise w. 
In very general it holds complete information = observable information + information loss. 

The identification problem requires a decoder – mapping η(y) between Y and X’ that is 
often called classification or parameter estimation function. We presume the result of 
identification x’ ∈ X’ = {x’ 1, x’2, … x’k} is an optimal estimation of class c or parameter θ 
corresponding to x, informally x ~ c ~ θc. Due to our goal, developing reliable identification 
system we seek for classifiers with minimum estimation error rates. 

That’s the time to introduce Bayes’ theorem which is derived from conditional 
probability P(X | Y), the probability of event X given event Y is 
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where P(Y | X) is the likelihood of Y given X. We can find that 
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presuming that probability P(Y) > 0, we obtain Bayes’ theorem: 
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Each term has a conventional name. P(X) is the prior  information having no 
information about P(Y), which is the prior marginal probability, acting as a normalizing 
constant and can be counted as the sum of all mutually exclusive hypotheses ∑XP(Y | xi)P(xi). 
P(Y | X) is likelihood or posterior probability given by the system or training. Finally P(X | Y) 
is the posterior probability, the conditional probability of X is derived from Y. Within this 
terminology the theorem can be rephrased as the normalized likelihood multiplied by prior 
probability and it provides a method for adjusting degrees of belief of new information. 

3 CLASSIFICATION 

In the case of classification we define a loss function λ(x1, x2) that penalizes 
classification errors of observation belonging to class x1 to x2 of X. We take for granted that 
correct decisions are cheaper than misclassifications. We choose the classification rule η*(y) 
that optimizes expected classification loss by minimization 
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where P(x | y) is the posterior probability for observing class x given y. Having especially 0-1 
loss function charging classification errors by 1, the loss function fade out the highest 
summand. Therefore we determine the highest posterior probability as 
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and the optimal decision rule is called Bayesian classifier. 

3.1 NAIVE BAYES CLASSIFICATION 

There are two possibilities how to make inferences about parameters of the underlying 
probability distribution of a given data set in (5). Maximum likelihood estimation or MLE 
simply expressed by maximal P(x | y) and its regularization known as Maximum a posteriori 
or MAP, presented as maximum of P(y | x)P(x). 

If we presume a training dataset D with categorical data, class prior probabilities of 
class x ∈ X is P(x) = |Dx| / |D| that means relative count of samples of class x in its 
collection D as in [1]. Using this prior probability leads Bayesian to interesting data mining 
techniques, similar to association rules with they’re support and confidence. 

In spite of capturing more concise structure information about analyzed data, the direct 
training of joint probabilities  of all observations Y prone extremely to overfitting . The 
solution is the naive assumption that each y is conditionally independent 
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or that attributes are not correlated. Thus we can get MAP as maximal P(y |x)P(x) 
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Example 1: Presume that there can lie apple, orange or chocolate on the table, P(x) = 0.33. 
We know that apple is (round, red), orange is (round, orange) and chocolate is 
(rectangle, brown). Thus we have y1 = {round, rectangle} and y2 = {red, orange, brown}. 
If we want to classify red rectangle we count the highest P(y | x)P(x), where each P(y | x) 
is computed from training data: 

P(rectangle | apple) * P(red | apple) * P(x) = 0.1 * 0.6 * 0.33 = 0.0198 

P(rectangle | orange) *  P(red | orange) * P(x) = 0.1 * 0.3 * 0.33 = 0.0099 

P(rectangle | chocolate) *  P(red | chocolate) * P(x) = 0.8 * 0.1 * 0.33 = 0.0264 

We can see that maximal posterior probability has the (unpacked) red chocolate. 

4 REGRESION 

Up to now we considered the mapping η(y) as a function predicting discrete categorical 
output. Real valued representation called regression is more suitable in parameter estimation. 
For instance the pose of a rigid object consists of 3 translational and 3 rotational degrees of 
freedom in the world coordinate system, denoted as θ ∈ R6. Regression function  



  

η(y) = θx depends on the actual class x. The most commonly used loss function is the square 
error λ(θx, η(y)) = |θx - η(y)|2. The regression function is generally the minimization 
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where p(θx | y) is the probability model density function of θx given y. Similar to Bayesian 
classifiers is the conditional expectation η(y) = E[θx | y]. Other representations of regression 
in statistics are parametric (linear) functions that restrict the parametric family and 
regularization to avoid overfitting. For further information see [2]. 

There is a great deal to accomplish pose estimation in computer vision. We should 
incorporate all available knowledge into the model construction like its size, shape or 3D 
structure where the transformation of image to the world coordinate system is available as 
well as the prior probability density of objects’ localizations and tracks. Also to the human 
recognition process should embed methods for accurate motion estimation covered by texture 
analysis for successful segmentation and recognition of basic shapes. 

Assuming uniform parameter distribution, the optimal estimation is then maximization 
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but we can presume more in our case. For example pedestrian location depends on sidewalks 
and passages outside or doors inside buildings. Orientation is given by they’re track. Also a 
human body can be split into 10-14 parts (head, torso and twice upper arm, forearm with 
hand, thigh and calf with foot). Its’ sizes are derived from biometric expectation based on the 
measured height, so the pose recognition falls to detect angles of 10 rectangles. 

5 BAYESIAN NETS 

The main disadvantage of methods described above is the assumption that classes or 
parameters are conditionally independent to prevent overfitting. In general we cannot make 
such presumption. Bayesian belief networks specify both categorical and continuous joint 
conditional probabilities in a natural way using graph theory. 

It consists of a graph in which each node Z represents a random variable z, z ~ y when z 
is observable or z ~ x when is hidden, representing a missing value. Edges represent a 
probabilistic dependence of nodes. Bayesian nets are in general oriented graphs. If there is an 
edge from Z1 to Z2, the node Z1 is called predecessor or parent of Z2 called descendant. Each 
variable is independent of its ancestors given its parents, where the ancestor relationship is 
with respect to some fixed topological ordering of the nodes. 

The second component defining a belief network is a conditional probability 
distribution  or CPD. That is a list that for each node Z specifies the conditional distribution 
P(Z | Parents(Z)), probability of node Z given by combination of all its parents. 

Example 2: There are 4 nodes with categorical variables in figure 3. We don’t know whether 
it rained or the sprinkler watered the grass, which is evidently wet. Our decision can 
influence observation of the sky. If it is cloudy there is higher possibility that rained than 
if the sky is bright. It can be shown in a manner of Bayesian belief networks. 
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Fig. 3: Example of Bayes net: We can see that the grass is wet. (from [5]) 

5.1 TEMPORAL BAYES NETWORKS 

Dynamic Bayesian networks or DBN are directed graphical models representing the 
hidden state in terms of state variables, which can have complex interdependencies. Simple 
kind is Hidden Markov Models, which has one discrete hidden node and one continuous 
observed node per time slice, 4 in fig. 4, showing dark circles as continuous observable nodes; 
squares denote discrete and white hidden states. Also Kalman filter is powerful [3] 
prediction-correction real-valued kind of DBN that can model even more than object tracking. 
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Fig. 4: Illustration of Hidden Markov and Kalman filter models 

CONCLUSION 

This work briefly introduces pattern recognition methods using Bayesian probability 
modeling. Bayesian classification in necessary in object or human recognition and in area of 
data mining for labeling unknown objects [1]. Regression is useful for pose estimation and 
tracking in real-world coordinate system [2]. It can use also advantages of Kalman filter, 
ensuring the smoothness of moving [3]. Tracks are saved to database and used as a learning 
sample for temporal Bayesian nets, that are well suitable [4] to detect nontrivial human 
behavior and its mutual influence either statistically dominant or outline. And that can be 
finally used as prior information to provide higher quality detection and recognition. 
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