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ABSTRACT

This work describes a framework for vision basedn&én detection, tracking, pose
recognition and behavior discovery in a uniform mamof Bayesian classifiers. It considers
mathematical concept of identification by classifion of preprocessed images and
regression of poses for discovering behavior padter its databases using Bayes’ nets.

1 INTRODUCTION

The main reason why to use probabilistic modeliogiflentification is the need for
unified mathematic formulation in different aread/e concern classification of hidden
parameters, which is affected by information laksmination noise and segmentation errors
what can be understood as a noise in a commumceliannel in figure 1.
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Fig. 1: Scene description as a channel (from [2])

The visual information and includedprior knowledge of the sensed world are the
main resources of considered application. The imagguisition and preprocessing is
followed by the object recognition and its’ posdiraation. Also these techniques may
misclassify sensed objects due to incompletenessadusions. Poses and tracks are stored in
database. Mining these spatio-temporal data previgeful information about sensed world
and can influence other modules of the vision sysby discovering frequent patterns of
behavior used than as a posterior to prior knovdddgdback.

2 COMMON BASE

The probability of any event is the ratio betweka value at which an expectation
depending on the happening of the event ought tcobguted, and the chance of the thing
expected upon sic (it's) happeniifigom [6])



The Bayes’ definition of probability looks limiteabwadays because assumes only the
extent of observable consequences. But it is wilhlle for us. Consider following system:

nw)

Fig. 2: Parameter estimation system

In figure 2 parametex /7 X = {X1, X%, ... X} IS ahidden stateor class that cannot be
observed directlyy /7Y ={y, ¥, ... W} is anobservation, information we can get about real
world. In computer vision it is usually a result mfeprocessing and segmentation of sensor
data, represented by functib(x), the encoder. For instancexifs anapple y = h(x) could be
(round, red).We cannot be sure because the channel is encuinbgrawhite noise w.

In very general it holdsomplete information = observable information +anmhation loss

Theidentification problem requires a decoder — mappin¢y) betweeny andX’ that is
often calledclassification or parameter estimation function. We presume the result of
identificationx’ /7 X = {X'1, X'z, ... Xi} IS anoptimal estimation of classc or parameted
corresponding t, informally x ~ ¢ ~ &. Due to our goal, developing reliable identifioati
system we seek for classifiers with minimestimation error rates.

That's the time to introducdayes’ theorem which is derived from conditional
probabilityP(X | Y) the probability of everX given eventy is

p(x 1Y) =P X 0Y) and pey|x)=PX0Y) )
P(Y) P(X)
whereP(Y | X)is the likelihood ofY givenX. We can find that
P(X|Y)PY)=P(XnY)=P(Y| X)P(X), (2)
presuming that probabilit?(Y) > O we obtain Bayes’ theorem:
P(Y | X )P( X
P(X [v)= PO ) ®)

Each term has a conventional nanm®&X) is the prior information having no
information aboutP(Y), which is the priormarginal probability, acting as a normalizing
constant and can be counted as the sum of all thutieclusive hypothesesxP(Y | X)P(%).
P(Y | X)is likelihood or posterior probability given by the system airimg. FinallyP(X | Y)
is the posterior probability, the conditional probability of is derived fromY. Within this
terminology the theorem can be rephrased as thmaiized likelihood multiplied by prior
probability and it provides a method for adjustdegrees of belief of new information.

3 CLASSIFICATION

In the case of classification we define l@ss function A(x;, %) that penalizes
classification errors of observation belonging lassx; to x; of X. We take for granted that
correct decisions are cheaper than misclassificstid/e choose the classification rafgy)
that optimizes expected classification loss by mination



/7*(y)=arg(r?inZ/1(>ﬁ NCYNP(X 1y) (4)

ey X

whereP(x | y)is the posterioprobability for observing classgiveny. Having especiallp-1
loss function charging classification errors ky the loss function fade out the highest
summand. Therefore we determine the highest postamobability as

7’ (y)=argmaxP(x|y)=argmaxP( y|x)P(x) (5)

and the optimal decision rule is callBdyesian classifier.

3.1 NAIVE BAYES CLASSIFICATION

There are two possibilities how to make inferenaglesut parameters of the underlying
probability distribution of a given data set in.(®)aximum likelihood estimation or MLE
simply expressed by maximB(x | y)and its regularization known &aximum a posteriori
or MAP, presented as maximummy | xX)P(x)

If we presume a training datadetwith categorical data, class prior probabilities of
classx [7X is P(x) = |[Dy / |D| that means relative count of samples of clags its
collectionD as in [1]. Using this prior probability leads Balan to interesting data mining
techniques, similar to association rules with theyupport and confidence.

In spite of capturing more concise structure infation about analyzed data, the direct
training of joint probabilities of all observationsy prone extremely tamverfitting. The
solution is thenaive assumptionthat eacly is conditionally independent

Y, Oy, = P(yly,)=P(y,) or P(y,0y,)=P(y,)P(Y,) (6)
or that attributes are not correlated. Thus wegedMAP as maximaP(y |x)P(x)
_ il _ | Dxl]yi |
P(y, Oy, 0.y, [¥) =[] P(y: [X) where P(y, |x) “ .| (7)
=1 X

Example 1: Presume that there can &pple orangeor chocolateon the tableP(x) = 0.33
We know thatapple is (round, red) orange is (round, orange)and chocolate is
(rectangle, brown)Thus we haveg; = {round, rectangle}andy. = {red, orange, brown}
If we want to classify red rectangle we count tighbstP(y | X)P(x) where eaclP(y | x)
Is computed from training data:

P(rectangle | apple) * P(red | apple) * P(x) = 0*10.6 * 0.33 = 0.0198
P(rectangle | orange) * P(red | orange) * P(x) ¥10* 0.3 * 0.33 = 0.0099
P(rectangle | chocolate) * P(red | chocolate) *#E 0.8 * 0.1 * 0.33 = 0.0264

We can see that maximal posterior probability Ias(tinpacked) red chocolate.

4 REGRESION

Up to now we considered the mappim@) as a function predicting discrete categorical
output. Real valued representation callegressionis more suitable in parameter estimation.
For instance the pose of a rigid object consist8 tvanslational an@® rotational degrees of
freedom in the world coordinate system, denoted ag7 R°. Regression function



n(y) = & depends on the actual classThe most commonly used loss function is the sguar
errorA (&, n(y)) = |& - n(y)F. The regression function is generally the miniricza

rf(y)=arg(g)ninj A(8,.7(y))p(6, | y)d6 (38)

wherep(& | y) is the probabilitynodel densityfunction of & giveny. Similar to Bayesian
classifiers is theonditional expectationn(y) = E[ & | y]. Other representations of regression
in statistics are parametric (linear) functions tthastrict the parametric family and
regularization to avoid overfitting. For furthefanmation see [2].

There is a great deal to accomplish pose estimatiocomputer vision. We should
incorporate all available knowledge into the modehstruction like its size, shape or 3D
structure where the transformation of image towleld coordinate system is available as
well as the prior probability density of objects’chlizations and tracks. Also to the human
recognition process should embed methods for atcunation estimation covered by texture
analysis for successful segmentation and recognitidoasic shapes.

Assuming uniform parameter distribution, the opliestimation is then maximization

g, =argmaxp(8,|y) (49)

but we can presume more in our case. For examplesp&n location depends on sidewalks
and passages outside or doors inside buildingen@ition is given by they're track. Also a

human body can be split inttD-14 parts (head, torso and twice upper arm, forearth wi

hand, thigh and calf with foot). Its’ sizes areided from biometric expectation based on the
measured height, so the pose recognition falletead angles af0 rectangles.

5 BAYESIAN NETS

The main disadvantage of methods described abotleisssumption that classes or
parameters are conditionally independent to preweatfitting. In general we cannot make
such presumptiorBayesian belief networksspecify both categorical and continuous joint
conditional probabilities in a natural way usinggin theory.

It consists of a graph in which each natleepresents a random varialzle ~ ywhenz
Is observable or z ~ xwhen ishidden, representing a missing value. Edges represent a
probabilistic dependence of nodes. Bayesian netgageneral oriented graphs. If there is an
edge fromZ; to Z,, the nodé&Z; is calledpredecessoror parent o¥Z, calleddescendant Each
variable is independent of its ancestors giverp#ieents, where the ancestor relationship is
with respect to some fixed topological orderinghad nodes.

The second component defining a belief network iscoaditional probability
distribution or CPD. That is a list that for each nadlspecifies the conditional distribution
P(Z | Parents(Z))probability of node given by combination of all its parents.

Example 2: There arel nodes with categorical variables in figure 3. V@'t know whether
it rained or the sprinkler watered the grass, whglkevidently wet. Our decision can
influence observation of the sky. If it is cloudhete is higher possibility that rained than
if the sky is bright. It can be shown in a mannfeBayesian belief networks.
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Fig. 3: Example of Bayes net: We can see that the grasstigfrom [5])

5.1 TEMPORAL BAYES NETWORKS

Dynamic Bayesian networksor DBN are directed graphical models representireg
hidden state in terms of state variables, which ltawve complex interdependencies. Simple
kind is Hidden Markov Models, which has one discrete hidden node and one aconim
observed node per time sliekin fig. 4, showing dark circles as continuous otakle nodes;
squares denote discrete and white hidden stateso Kélman filter is powerful [3]
prediction-correction real-valued kind of DBN tlzain model even more than object tracking.
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Fig. 4: lllustration of Hidden Markov and Kalman filter meld

CONCLUSION

This work briefly introduces pattern recognition thmds using Bayesian probability
modeling. Bayesian classification in necessaryhject or human recognition and in area of
data mining for labeling unknown objects [1]. Reggien is useful for pose estimation and
tracking in real-world coordinate system [2]. Ithcase also advantages of Kalman filter,
ensuring the smoothness of moving [3]. Tracks axed to database and used as a learning
sample for temporal Bayesian nets, that are wathisie [4] to detect nontrivial human
behavior and its mutual influence either statisycdominant or outline. And that can be
finally used as prior information to provide higlwgrality detection and recognition.
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