
TWO-SIDED PUSHDOWN AUTOMATA OVER FREE
GROUPS

Ing. Radek BIDLO, Doctoral Degree Programme (2)
Dept. of Information Systems, FIT, BUT

E-mail: bidlor@fit.vutbr.cz

Ing. Petr BLATNÝ, Doctoral Degree Programme (2)
Dept. of Information Systems, FIT, BUT

E-mail: blatny@fit.vutbr.cz

Supervised by: Prof. Alexander Meduna

ABSTRACT

In the two-sided pushdown automata discussed in this paper, their two-sided push-
downs are introduced over free groups rather than free monoids. It is demonstrated that
these automata with pushdowns introduced in this way characterize the family of recur-
sively enumerable languages.

1 INTRODUCTION

Standardly, in the case of common pushdown automata, their pushdowns are in-
troduced over free monoids generated by the pushdown alphabets under the operation of
concatenation. In some studies, however, these automata are defined and investigated with
various modifications (see [4], [6]). The present paper represents another study of this
kind.

Indeed, in this paper, we introduce the two-sided pushdown automata over free
groups with the two-sided pushdowns defined over free groups rather than free monoids.
In this way, we significantly increase the power of pushdown automata, because they char-
acterize the family of recursively enumerable languages.

2 DEFINITIONS

This paper assumes that the reader is familiar with the language theory and algebra
(see [1], [2], and [3]). Next, this section recalls only the notions used in this paper.

For an alphabet, V , V ∗ represents the free monoid generated by V under the operation
of concatenation. Furthermore, V ◦ represents the free group generated by V under the

operation of concatenation. The unit of V ◦ is denoted by ε. For every string, w ∈V ◦, there
is the inverse string of w, denoted by w, with the property that ww = ww = ε. For w ∈V ∗

or w ∈V ◦, |w| denotes the length of w.
The inverse string of w = a1a2 . . .an, where ai ∈ V , i = 1,2, . . . ,n, n > 0, is defined

as w = anan−1 . . .a1. And for w = ε is w = ε. Moreover, the reverse of w is defined as
rev(w) = anan−1 . . .a1. The string is said to be reduced, if it contains no pairs of the form
xx or xx, where x,x ∈V ◦.

Let w = uxyv ∈V ◦ is a string, where x,y,u,v ∈V ◦ and x = y. To express that x and y
are mutually inverse and can be erased, we underline xy in uxyv.

A queue grammar (see [5]) is a sextuple, Q = (V,T,W,F,s,P), where V and W are
alphabets satisfying V ∩W = /0, T ⊆ V , F ⊆W , s ∈ (V −T)(W −F), and P ⊆ V × (W −
F)×V ∗×W is a finite relation such that for every a∈V , there exists an element (a,b,x,c)∈
P. If u,v ∈ V ∗W , u = arb, v = rxc, a ∈ V , r,x ∈ V ∗, b,c ∈W , and (a,b,x,c) ∈ P, then
u ⇒ v[(a,b,x,c)] in Q or, simply, u ⇒ v. In the standard manner, extend ⇒ to ⇒n, where
n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗. The language of Q, L(Q), is defined as
L(Q) = {w : s⇒∗ w f ,w ∈ T ∗, f ∈ F}.

A left-extended queue grammar (see [4]) is similar to an ordinary queue grammar
except that it records the members of V used when it works. Formally, a left-extended
queue grammar is a sextuple, Q = (V,T,W,F,s,P), where V,T,W,F , and s have the same
meaning as in a queue grammar. P⊆V ×(W −F)×V ∗×W is a finite relation (as opposed
to an ordinary queue grammar, this definition does not require that for every a ∈ V , there
exists an element (a,b,x,c)∈P). Furthermore, assume that # 6∈V ∪W . If u,v∈V ∗{#}V ∗W
so that u = w#arb, v = wa#rxc, a ∈ V , r,x,w ∈ V ∗, b,c ∈ W , and (a,b,x,c) ∈ P, then
u ⇒ v[(a,b,x,c)] in Q or, simply, u ⇒ v. In the standard manner, extend ⇒ to ⇒n, where
n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗. The language of Q, L(Q), is defined as
L(Q) = {v : #s⇒∗ w#v f for some w ∈V ∗, v ∈ T ∗ and f ∈ F}.

A string-reading two-sided pushdown automaton over a free group, a SR2S◦ push-
down automaton for short, is an 8-tuple, M = (Q,Σ,Γ,R,z,Z1,Z2,F), where Q is a finite
set of states, Σ is an input alphabet, Γ is a pushdown alphabet, Q∩ (Σ∪Γ) = /0, R is a finite
set of rules of the form u1|u2qw→ v1|v2 p with u1,u2 ∈ Γ, v1,v2 ∈ Γ◦, p,q∈Q, and w∈ Σ∗,
z∈Q is the start state, Z1 ∈ Γ is the start symbol of the front side, Z2 ∈ Γ is the start symbol
of the rear side, and F ⊆ Q is a set of final states. A configuration of M is any string of
the form vqy, where v ∈ Γ◦, y ∈ Σ∗, and q ∈ Q. If u1|u2qw → v1|v2 p ∈ R, y = u1hu2qwz,
and x = v1hv2 pz, where u1,u2 ∈ Γ, h,v1,v2 ∈ Γ◦, q, p ∈ Q, and w,z ∈ Σ∗, then M makes
a move from y to x in M, symbolically written as y◦⇒ x[u1|u2qw → v1|v2q] or, simply,
y◦⇒ x. In the standard manner, extend ◦⇒ to ◦⇒n, where n ≥ 0; based on ◦⇒n, define
◦⇒+ and ◦⇒∗. We call Z1Z2zw◦⇒∗ vqx a computation, where v ∈ Γ◦, q ∈ Q, w,x ∈ Σ∗;
a computation of the form Z1Z2zw◦⇒∗ ε f with f ∈ F is a successful computation. The
language of M, L(M)◦, is defined as L(M)◦ = {w : Z1Z2zw◦⇒∗ ε f , where f ∈ F,w ∈ Σ∗}.

A two-sided pushdown automaton over a free group, a 2S◦ pushdown automaton
for short, is a string-reading two-sided pushdown automaton over a free group, M =
(Q,Σ,Γ,R,z,Z1, Z2,F), in which every u1|u2qw → v1|v2 p ∈ R satisfies |w| ≤ 1, where
u1,u2 ∈ Γ, v1v2 ∈ Γ◦, q, p ∈ Q, and w ∈ Σ∗.

3 RESULTS

Lemma 3.1 For every recursively enumerable language, L, there exists a left-extended
queue grammar, G = (V,T,W,F,s,P), such that L(G) = L and every (A,q,x, p)∈P satisfies
A ∈ (V −T), q ∈ (W −F), and x ∈ ((V −T)∗∪T ∗). Formal proof is described in [4].

Corollary 3.1 Let G = (V,T,W,F,Sq0,P) be a left-extended queue grammar satisfying
the properties given in Lemma 1. Grammar G generates every w ∈ L(G) in this way

#Sq0
⇒ x1#y1q1 [p1]
⇒ x2#y2q2 [p2]

...
⇒ xk#ykqk [pk]
⇒ xk+1#yk+1z1qk+1 [pk+1]

...
⇒ xk+ j−1#yk+ j−1z j−1qk+ j−1 [pk+ j−1]
⇒ xk+ j#yk+ jz jqk+ j [pk+ j]
⇒ xk+ jyk+ j#z j+1qk+ j+1 [pk+ j+1]

where x1, . . . ,xk+ j ∈ (V −T)∗, y1, . . . ,yk+ j−1 ∈ (V −T)∗, yk+ j ∈ (V −T), z1, . . . ,z j+1 ∈ T ∗,
z j+1 = w, q1, . . . ,qk+ j ∈ (W −F), qk+ j+1 ∈ F . p1, . . . , pk are of the form (A,q,x, p), where
A ∈ (V −T), p,q ∈ (W −F) and x ∈ (V −T)∗. pk+1, . . . , pk+ j are of the form (A,q,y, p),
where A ∈ (V −T), p,q ∈ (W −F) and y ∈ T ∗. The last used production, pk+ j+1, is of the
form (A, p,y, t), where A ∈ (V −T), p ∈ (W −F), y ∈ T ∗ and t ∈ F .

Theorem 3.1 For every left-extended queue grammar, G = (V,T,W,F,Sq0,P), satisfying
the properties described in Lemma 1, there exists a string-reading two-sided pushdown
automaton over a free group, M = (Q,T,Z,R,z,ZL,ZR,FM), such that L(G) = L(M).

Proof 3.1 We construct a string-reading two-sided pushdown automaton over a free group
as follows (we will describe only the construction).

Q = { f ,z}∪{〈q,1〉,〈q,2〉|q ∈W}

Z = {ZL,ZR,ZL,ZR}∪ (V −T)∪N, where N = {x|x ∈ (V −T)}

FM = { f}

The set of rules, R, is constructed in the following way.

1) for the start axiom of G, Sq0, where S ∈ (V −T), q0 ∈ (W −F),
add ZL|ZRz→ ZL|SZR〈q0,1〉 to R

2) for every (A,q,x, p) ∈ P, where A ∈ (V −T), p,q ∈ (W −F), x ∈ (V −T)∗,
add ZL|ZR〈q,1〉 → ZLA|xZR〈p,1〉 to R

3) for every q ∈W
add ZL|ZR〈q,1〉 → ZL|ZR〈q,2〉 to R

4) for every (A,q,y, p) ∈ P, where A ∈ (V −T), p,q ∈ (W −F), y ∈ T ∗,
add ZL|ZR〈q,2〉y→ ZLA|ZR〈p,2〉 to R

5) for every (A,q,y, t) ∈ P, where A ∈ (V −T), q ∈ (W −F), t ∈ F , y ∈ T ∗

add ZL|ZR〈q,2〉y→ A|ε f to R

The construction is completed. If 〈q,1〉 is the actual state of M, we say that M is in
nonterminal-generating mode. Similarly, if 〈q,2〉 is the actual state of M, we say that M is
in terminal-reading mode, where q ∈W . The formal proof exceeds the allowed number of
pages, so the formal proof is left to the reader.

4 CONCLUSIONS

The paper has presented a new type of pushdown automaton. By modifying the push-
down to the two-sided version and by defining it over free group rather that free monoid,
we significantly increase its power. These automata define the family of recursively enu-
merable languages.

The next investigation of these automata will target the reduction of the pushdown
alphabet. Results of it can be a topic of some next paper.

ACKNOWLEDGEMENTS

The authors wish to thank Prof. Alexander Meduna for useful discussions during
preparation of this paper.

REFERENCES

[1] Salomaa, A.: Formal Languages, Academic Press, New York, 1973.

[2] Jacobson, N.: Basic Algebra, 2nd ed., W.H. Freeman, New York, 1989.

[3] Meduna, A.: Automata and Languages: Theory and Applications, Springer, London,
2000.

[4] Meduna, A.: Simultaneously One-Turn Two-Pushdown Automata, in International
Journal of Computer Mathematics, No. 82 Taylor & Francis Informa plc, pp. 1-9, 2003.

[5] Kleijn, H. C. M., and Rozenberg, G.: On The Generative Power of Regular Pattern
Grammars, in Acta Informatica, 20, pp. 391-411, 1983.

[6] Meduna, A., and Kolar, D.: Regulated Pushdown Automata, in Acta Cybernetica, 14,
pp. 653-664, 2000.

