TWO-SIDED PUSHDOWN AUTOMATA OVER FREE
GROUPS

Ing. Radek BIDLO, Doctoral Degree Programme (2)
Dept. of Information Systems, FIT, BUT
E-mail: bidlor@fit.vutbr.cz

Ing. Petr BLATNY, Doctoral Degree Programme (2)
Dept. of Information Systems, FIT, BUT
E-mail: blatny @fit.vutbr.cz

Supervised by: Prof. Alexander Meduna

ABSTRACT

In the two-sided pushdown automata discussed in this paper, their two-sided push-
downs are introduced over free groups rather than free monoids. It is demonstrated that
these automata with pushdowns introduced in this way characterize the family of recur-
sively enumerable languages.

1 INTRODUCTION

Standardly, in the case of common pushdown automata, their pushdowns are in-
troduced over free monoids generated by the pushdown alphabets under the operation of
concatenation. In some studies, however, these automata are defined and investigated with
various modifications (see [4], [6]). The present paper represents another study of this
kind.

Indeed, in this paper, we introduce the two-sided pushdown automata over free
groups with the two-sided pushdowns defined over free groups rather than free monoids.
In this way, we significantly increase the power of pushdown automata, because they char-
acterize the family of recursively enumerable languages.

2 DEFINITIONS

This paper assumes that the reader is familiar with the language theory and algebra
(see [1], [2], and [3]). Next, this section recalls only the notions used in this paper.

For an alphabet, V, V* represents the free monoid generated by V under the operation
of concatenation. Furthermore, V° represents the free group generated by V under the

operation of concatenation. The unit of V° is denoted by €. For every string, w € V°, there
is the inverse string of w, denoted by w, with the property that ww = ww = €. Forw € V*
orw € V°, |w| denotes the length of w.

The inverse string of w = a1a>...a,, where a; € V,i=1,2,...,n, n > 0, is defined
as w = a,a,—1...a1. And for w = € is w = €. Moreover, the reverse of w is defined as
rev(w) = aya,—1 ...aj. The string is said to be reduced, if it contains no pairs of the form
xXx or xx, where x,x € V°.

Let w = uxyv € V° is a string, where x,y,u,v € V° and x =y. To express that x and y
are mutually inverse and can be erased, we underline xy in uxyv.

A queue grammar (see [5]) is a sextuple, Q = (V, T, V‘TF,S,P), where V and W are
alphabets satisfying VAW =0, TCV, FCW,sc€ (V-T)(W—F),and PCV x (W —
F) x V* x W is a finite relation such that for every a € V, there exists an element (a,b,x,c) €
P. ffuyveV*W,u=arb,v=rxc,a €V, rnx€V* bceW,and (a,b,x,c) € P, then
u = v|[(a,b,x,c)] in Q or, simply, u = v. In the standard manner, extend = to =", where
n > 0; then, based on =", define =" and =*. The language of Q, L(Q), is defined as
LQ)={w:s="wfweT* feF}.

A left-extended queue grammar (see [4]) is similar to an ordinary queue grammar
except that it records the members of V used when it works. Formally, a left-extended
queue grammar is a sextuple, Q = (V,T,W,F,s,P), where V,T,W,F, and s have the same
meaning as in a queue grammar. P CV x (W — F) x V* x W is a finite relation (as opposed
to an ordinary queue grammar, this definition does not require that for every a € V, there
exists an element (a,b,x,c) € P). Furthermore, assume that # Z VUW. If u,v € V*{#}V*W
so that u = w#arb, v = wattrxc, a € V, r,x,w € V*, b,c € W, and (a,b,x,c) € P, then
u = v[(a,b,x,c)] in Q or, simply, u = v. In the standard manner, extend = to =", where
n > 0; then, based on =", define =" and =*. The language of Q, L(Q), is defined as
L(Q)={v:#s="wivf forsomew e V*,ve T* and f € F}.

A string-reading two-sided pushdown automaton over a free group, a SR2S° push-
down automaton for short, is an 8-tuple, M = (Q,X,T",R,z,Z1,7Z,,F), where Q is a finite
set of states, X is an input alphabet, I" is a pushdown alphabet, QN (XUT") =0, R is a finite
set of rules of the form u;|upqgw — vi|vop withuy,us €T, vi,v2 €T°, p,qg € Q, and w € X¥,
z € Qs the start state, Z; € I is the start symbol of the front side, Z, € I' is the start symbol
of the rear side, and F C Q is a set of final states. A configuration of M is any string of
the form vqy, where v € I'°, y € £*, and g € Q. If u;|upgw — vi|vap € R, y = ujhupgwz,
and x = vihvopz, where uy,up € I, hyvi,vo € I'°, ¢,p € O, and w,z € £*, then M makes
a move from y to x in M, symbolically written as y° = x[u;|uoqw — vi|vaq] or, simply,
y° = x. In the standard manner, extend °=- to ° =", where n > 0; based on ° =", define
°=" and °=*. We call Z;Zzw° =* vgx a computation, where v € I'°, g € O, w,x € L*;
a computation of the form Z;Zzw° =" ¢f with f € F is a successful computation. The
language of M, L(M)°, is defined as L(M)° = {w : Z1Zpzw° =" €f, where f € F,w € £*}.

A two-sided pushdown automaton over a free group, a 2S° pushdown automaton
for short, is a string-reading two-sided pushdown automaton over a free group, M =
(Q,X,T',R,z,Z1, Z,F), in which every uj|uagw — vi|vap € R satisfies |w| < 1, where
u,up e, vivo €I°, g, p € Q,andw € L*.

3 RESULTS

Lemma 3.1 For every recursively enumerable language, L, there exists a left-extended
queue grammar, G = (V,T,W,F,s, P), such that L(G) = L and every (A, g, x, p) € P satisfies
Ae(V-T),qe (W—F),and x € ((V—T)*UT?*). Formal proof is described in [4].

Corollary 3.1 Let G = (V,T,W,F,Sqo,P) be a left-extended queue grammar satisfying
the properties given in Lemma 1. Grammar G generates every w € L(G) in this way

#5q0
= xi#yiq (p1]
= g (2]
= Xi#yrqr [Pl
=

X 1#Yk121Gk+1 [Pk+1]

= X j— 1V 12 1 Gkt =1 [Pietj—1]

= Xkt Ykt 2 Gk+ [Pi+ ;]

= Xkt Yk 19kt 41 [Pkt j+1]
wherexl,...,xk+j € (V—T)*,yl,...,ykﬂ_l € (V—T)*,yk+j S (V—T),Zl,...,Zj+1 eT*,
L1 =W, q1,- Gkt j € W —=F), i j+1 € F. p1,..., pi are of the form (A, g,x, p), where
Ae(V-T),p,ge W—F)andx € (V—T)* pit1,-...,Pk+j are of the form (A,q,y, p),
where A € (V—T), p,g€ (W—F)andy e T*. The last used production, py4 j+1, is of the
form (A, p,y,t), where Ac (V—-T),pe (W—F),yeT*andt € F.

Theorem 3.1 For every left-extended queue grammar, G = (V,T,W, F,Sqo, P), satisfying
the properties described in Lemma 1, there exists a string-reading two-sided pushdown
automaton over a free group, M = (Q,T,Z,R,z,Z1,Zg, Fy), such that L(G) = L(M).

Proof 3.1 We construct a string-reading two-sided pushdown automaton over a free group
as follows (we will describe only the construction).

0={f,z}U{{g;1),(q,2)lg e W}
Z=1{21,Z,Z1,ZR}U(V —T)UN, where N = {x|x € (V —-T)}
Fy ={f}

The set of rules, R, is constructed in the following way.

1) for the start axiom of G, Sqo, where S € (V—T), qo € (W —F),
add ZL|ZRZ — ZL‘SZR<q0, 1> to R

2) forevery (A,q,x,p) € P,whereA€ (V—T),p,qe (W—F),xe(V-T)",
add ZL’ZR<q, l> — ZLA‘XZRO), 1> toR

3) foreveryge W
add ZL|ZR <q, 1> — ZL’ZR (q,2) to R

4) forevery (A,q,y,p) € P, where A€ (V—-T),p,qe (W—F),yeT",
add ZL’ZR <q, 2>y — ZLA‘ZR<p, 2> to R

5) forevery (A,q,y,t) € P,whereA€ (V—-T), g€ (W—F),teF,yeT"
add ZL’ZR <q, 2>y — A’Sf to R

The construction is completed. If (g,1) is the actual state of M, we say that M is in
nonterminal-generating mode. Similarly, if (g,2) is the actual state of M, we say that M is
in terminal-reading mode, where g € W. The formal proof exceeds the allowed number of
pages, so the formal proof is left to the reader.

4 CONCLUSIONS

The paper has presented a new type of pushdown automaton. By modifying the push-
down to the two-sided version and by defining it over free group rather that free monoid,
we significantly increase its power. These automata define the family of recursively enu-
merable languages.

The next investigation of these automata will target the reduction of the pushdown
alphabet. Results of it can be a topic of some next paper.

ACKNOWLEDGEMENTS

The authors wish to thank Prof. Alexander Meduna for useful discussions during
preparation of this paper.

REFERENCES

[1] Salomaa, A.: Formal Languages, Academic Press, New York, 1973.
[2] Jacobson, N.: Basic Algebra, 2nd ed., W.H. Freeman, New York, 1989.

[3] Meduna, A.: Automata and Languages: Theory and Applications, Springer, London,
2000.

[4] Meduna, A.: Simultaneously One-Turn Two-Pushdown Automata, in International
Journal of Computer Mathematics, No. 82 Taylor & Francis Informa plc, pp. 1-9, 2003.

[5] Kleijn, H. C. M., and Rozenberg, G.: On The Generative Power of Regular Pattern
Grammars, in Acta Informatica, 20, pp. 391-411, 1983.

[6] Meduna, A., and Kolar, D.: Regulated Pushdown Automata, in Acta Cybernetica, 14,
pp. 653-664, 2000.

