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ABSTRACT 

In the article we are interested in quantum optical communication. Hence the 
information is carried with using photons (generally with states of systems). We concentrate 
our attention on the quantum description of states which are prepared by light sources. And 
consequently we calculate bit error rate for various types of transmissions. If the measuring 
process is acted in the special basis, the minimum bit error rate is obtained. 

1 INTRODUCTION 

Firstly, we introduce some basic notions used in quantum communication theory. In the 
communication structure there are two the most important phases. The first phase is the 
quantum system preparation (this phase is represented by light sources). And the second 
phase, analogous to the first one, is the measuring process (light detector). Hence preparations 
and measurements are the primitive notions of quantum theory. 

A quantum system is some kind of abstraction which exists in the mind of the observer 
and is given by particular measuring process. In the other words, a quantum system is 
something that admits a quantum description in a given test. A definition of quantum state has 
a clearer meaning. A state is fully characterized by the probabilities of the various outcomes 
of possible measurements. 

Mathematically the pure states of systems are represented by state vectors. These 
vectors are components of complex vector space (its dimension depends on the number of 
maximum outcomes of test). Every physical process (every observable) is completely 
determined by the particular matrix. Each state after measurement of observable A  can be 
written as a superposition of the eigenstates of A . Thus these eigenstates are given by a 
particular maximal test (roughly speaking, maximal test is a measuring process with ideal 
resolution and with maximum number of different outcomes). 

There are two types of states. Pure states and mixed states. If a given system has defined 
probabilities for each outcome in a maximal test then the system is in a pure state. If 
following is untrue, it is said that the system is in a mixed state. 



  

2 N-STATE DEMODULATION 

Suppose N -state transmission of information. Each state is represented by a different 
pure state. For instance, if two-state modulation is used, 0 bit can be represented by 
horizontally polarized photon and 1 bit by vertically polarized photon. Detection space in the 
receiver side can be divided into N  disjoint subspaces { }jN . Each subspace is characterized 

by a particular projection operator jP̂ [1] 
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where kb  is an eigenvector of observable which is measured. For example, an observable 

can test polarization of photon. We noticed, that n -th decision is represented by n -th pure 
state. But in general, several pure states belong to the n -th subspace. For instance, 
horizontally polarized photon was disturbed by channel and there is a little probability that the 
photon will passed the test on the vertically polarization. But it still represents 0 bit. Hence n -
th subspace is represented by a mixed state. Each mixed state can be written as [1] 
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where Ŵ  denotes density matrix and iw  is the probability that the state iϕ  occurs in given 

mixed state (state iϕ  is a superposition of eigenvectors ib ). Note, that ji bb  denotes 

scalar product and physical meaning of 
2

ji bb  is probability that pure state jb  passes the 

test for ib  (that means if pure state ib  is tested then it certainly passes the test). A useful 

meaning of density matrixes is given in [3] 

The average probability of correct decision is 
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where np  denotes the probability that nŴ  occurs. Eq. (3) can be written as 
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where ( )⋅Tr  denotes trace of the matrix. The average probability of error is then expressed as 

.1 CE PP −=  

3 MINIMIZE OF ERROR PROBABILITY 

For simplicity we assume only two detection subspaces (for instance, OOK). Then from 
Eq. (3) one obtains 

 ( ) ( )( ).ˆˆTrˆTr1ˆˆTr 1221111 PWWpPWpPC −−+=  ( 5 ) 

From Eq. (5) it can be seen that to achieve minimal average probability of correct decision the 



  

term ( )1̂
ˆTr PW∆  must be maximized ( 21

ˆˆˆ WWW −=∆ ). Now, suppose that operator Ŵ∆  
satisfies equation (it is not restriction) 
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where lα  are eigenvectors of Ŵ∆ a lα  are its eigenvalues. Then Eq. (6) can be rewritten as 
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Eigenvalues lα  of operator Ŵ∆  are real numbers. To obtain minimal error probability, 

positive numbers lα  achieve the maximal value and negative lα  achieve the minimal value. 

The probability term 
2

kl bα  occurs boundary values 1 and 0 if and only if lkkl b δα = . 

Hence for obtaining the minimal error probability projection operator 1̂P  is expressed as 
follow 
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The physical interpretation of the result (8) is following. Instead of using test which is 
represented by Eq. (1), there is used a different test determined by eigenvectors lα . Using 

previous equations the resulting formula is obtained ( 5,01 =p  was supposed) 
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Suppose that pure state of photon 1ϕ  represents 0 bit and pure state 2ϕ  represents 1 

bit. Because a photon is a particle which is described by two dimension complex vector space 
(of course, only when polarization is considered), states 11  , ϕϕ  can be expressed as 

 .     , 22211222211111 babababa +=+= ϕϕ  ( 10 ) 

To obtain EPmin  Eq. (6) must be solved. The result is 
2

212,1 1 ϕϕα −±= . Hence (with 

using Eq. (9)) 
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And the measuring process is characterized by new orthogonal vectors 

 22211222211111      , bcbcbcbc +=+= αα  ( 12 ) 

where 
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states in Eq. (12) are normalized. In Fig. (1) there is calculated error probability for this 
transmission.  



  

Let us denote n  as a number state. Hence n  is the state which contains exactly  n  

identical photons. Normalized coherent states are given by the following superposition of 
number states [1] 
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where δκ ien=  and n  is the average number of photons in state κ . Eq. (13) describes 

laser radiation. Thus photons in a laser pulse have the same wavelength and polarization. So 
these parameters do not occur in the Eq. (13). Let us suppose OOK. 1 bit is represented by 
state κ  and 0 bit by state 0 . With using Eq. (4) we can write 
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Error probability is .e
2

1 n
EP −=  And finally minimal error probability is given by 
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min . These two probabilities are shown in Fig. (2). 

 

Fig. 1: Single photon transmission Fig. 2: Coherent states 

 

4 A PHOTON IN A COHERENT STATE 

In the previous section about coherent states the polarization of photon was not 
considered. But if a single-photon transmission is considered then polarization of photons 
play a key role. The right-handed photon (different polarization can be used) prepared by a 
laser diode is represented by the following state (1=n ) 
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A left-handed photon is given in the similar way (symbols rR  ,  are replaced by lL  , ). 
For a single-photon transmission is important only situation when exactly one photon is 



  

detected. For this, Eq. (15) is rewritten as (the phase factor δ  is placed zero, because we are 
interested in probabilities) 

 ( ) rnrR  ,1e1 ,1e
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where rn  ,1≠  denotes the states which contain ∞ ., . . ,2 ,0  right-handed photons. An 

arbitrary polarization state of photon can be expressed as (a right-handed photon satisfies 
conditions 0 ,1 21 == aa ) 
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Coefficients 21  , aa characterize the light source and can be evaluated by virtue of statistical 

measuring ofϕ . The minimal bit error rate of two-state modulation is given by (11). States 

21  , ϕϕ  are given by the first part of relation (17), hence LR  ,  representation is used. 

While states 21  , ϕϕ  are expressed in basis lnrn  , , ,  ( ∞=  ..., ,1 ,0n ) and then are put in 

formula (11), the higher BER is occurred. That is why the detector also detects a number of 
photon different from 1. These transmissions contain no information. But this kind of BER is 
different from the one given by equation (11) and can be eliminated by increasing of bit rate. 
Hence information is obtained when the detector detects exactly one arbitrary polarized 
photon. From (16) can be seen that bit rate is reduce by factor 1e− . In the other words, in 
average three laser pulses are needed for successful transmission of a classical bit.  

 The states of basis lnrn  , , ,  are simultaneously eigenstates of the energy operator 

and one component of moment of momentum operator. That is why they form an orthogonal 
set.  
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