
  

NETWORK SIMULATIONS WITH JAVA SSFNET 
PLATFORM 

Ing. Marek HUCZALA, PhD Degree Programme, 
Dept. of Telecommunications, FEEC, BUT 

E-mail: huczala@kn.vutbr.cz 

Supervised by: Dr. Vladislav Škorpil 

ABSTRACT 

The following paper introduces Java SSFNet platform for computer network modelling 
and simulations. The SSFNet platform is a Java-based software interface that might be 
implemented on its own or with a cooperation with an upper level software kit. First, we 
discuss the library classes for the network scheme development and the ways of launching the 
network simulation process. Later chapters briefly describe a newly developed graphical user 
interface into the SFFNet platform. The use of the simulation sofware is outlined in the end of 
the paper.  

1 INTRODUCTION TO NETWORK MODELLING AND SIMULATIONS 

Network modelling and simulation plays an important role when designing large 
network infrastructures both heterogenous and homogenous. The main intention of here 
presented simulation software toolkit is, however, to graphically demonstrate the funcionality 
of different network standards. Hopefully it will help students to understand the basics of 
network communication. 

The new simulation application was built in Java programming language on top of 
SSFNet platform for network modelling and simulations. Any user of the application can now 
easily define a new network model using DML syntax and launch the simulation either by 
calling SSFNet simulation process or via NetSim window’s menu.  

Next chapters provide an overview of both SSFNet platform and NetSim application. 

2 JAVA SSFNET PLATFORM 

The SSFNet is a collection of Java SSF-based components for modelling and simulation 
of Internet protocols and IP (Internet Protocol) based computer networks. By default, the 
SSFNet components are represented by Java pronsipal classes that were later united into the 
following two main software frameworks: 

• SSF.OS is used for modeling of the host and operating system components. Network and 



  

transport layer protocol such as SSF.Net.IP and SSF.Net.TCP are laid on top of SSF.OS 
class.  

• SSF.Net is used for modeling network connectivity, creating nodes and link 
configurations. It loads all the model's configuration file and controls the orderly 
instantiation of the entire model: hosts and routers with their protocols, links connecting 
hosts and routers, as well as traffic scenarios and multiple random number streams. 

 

3 BUILDING A NEW NETWORK SCHEME 

The network configuration is stored in DML (Dynamic MarkUp Language) scheme 
definition file. New DML file uniquely describes the complete network architecture from both 
hardware and software aspect. 

The configuration file follows the DML syntax structures that allow keyword, value 
specifications. DML syntax grammar is based on standardized well-known XML structure. 

Network file scheme definition begins with keywords scheme and Net as it follows: 
 
schemas [ 
 Net [ 
  frequency  simulation_runtime 

The frequency attribut specifies the total time of simulation process. Network, always 
defined by the Net keyword, represents a set of hosts, routers, links and when modelling more 
complex network environments even subnets.  

Here is an example of a subnet definition using the Net keyword: 
 
Net [ 
 id id_no 
 idrange id_no from --- to --- 
 . 
 . 
 . 
 ip net_mask_def 
 _extends .schemas.Net 
] 

The id and idrange attributes are used for subnet identification while ip attribute passes 
on network mask definition. The _extends attribute specifies the higher level syntax used - in 
current example it follows the default Net scheme. The SSF.Net.host intruduces the following 
host configuration scheme: 

 
host [ 
 id id_no 
 idrange id_no from --- to --- 
 
 ] 

Router definition very likely follows the host definition. Interfaces of the implemented 
network elements are described by a local keyword interface followed by a set of attributes 
such as bitrate, latency or virtual. Links connecting network nodes are set up by link keyword 
whereas the traffic flow between nodes is defined by traffic keyword and its attributes. Every 
fragment of the DML definition file is processed by a corresponding class. For example, host 
definition is being handled by SSF.Net.host class while links by SSF.Net.link principal class.  



  

By default, the network definition scheme is interpreted by SSF.Net.Net class. It loads 
the complete network model, network elements such as routers, hosts, protocols and links 
specifications as well as network traffic scenario.  

4 LAUNCHING SIMULATION PROCESS 

Pre-simulation process is usually invoked by the main function of SSF.Net.Net class. 
The process itself comprises of several stages. The first stage involves schemantical DML 
scheme check: 

 
if (doSchemaCheck)  
        netconfig.check(); 
      Configuration netcfg = (Configuration)netconfig.findSingle(".Net"); 
      if (netcfg == null) { 
          System.exit(-1); 
      }  
      if (null != netconfig.findSingle(".link") || 
          null != netconfig.findSingle(".router") || 
          null != netconfig.findSingle(".host")) { 
          System.exit(-1); 
      } 

Within this pre-simulation stage some essential parameters are being checked, such as 
link, router or host. The IP address space of all networks and subnets is being allocated in the 
2nd stage. Routing informations are added subsequently. Links and connections between 
network nodes are being checked in the end of the pre-simulation process. 

At programmer’s view, the SSF.Net.Net object will use the services of the DML library 
to load the content of the configuration files and net.dml (by default) into a runtime 
Configuration database object. After that, SSF.Net.Net will systematically instantiate and 
configure all simulation objects such as hosts, routers, protocols, and network links. Once all 
simulation objects have been instatiated, the initialization phase begins by calling init() 
methods of all the entity subclasses. Finally SSF.Net.Net invokes its method startAll(), and 
the simulation begins with simulation time value equal to 0 sec. There is a lot of verbose 
output, including the automatically generated IP address blocks etc., that may be suppressed 
by command line options to SSF.Net.Net. 

The simulation runtime may be specified as a command line argument to SSF.Net.Net 
class or directly inside the configuration scheme file. The Java Development Kit 1.3 or higher 
is required for running all the SSFNet simulations. 

5 GRAPHICAL USER INTERFACE – NETSIM 

The simulation results as they come out of the SSFNet simulation process can only be 
viewed in a text mode. The main purpose of building a new graphical application NetSim is to 
be able to demonstrate the results in a windows-like shape.  

The application window consists of a network scheme internal frame, state bar showing 
the current simulation state and the simulation results frame. The network scheme is being 
drawn during the pre-simulation process inside the scheme internal frame. The information 
included in the network configuration file is used for this purpose. The window’s state bar 
shows the the current simulation state. The bar is invoked by the pre-simulation process. The 



  

simulation results are shown in the very bottom part of the application window. The 
application’s toolbar consists of two icons which might be used in later development stage for 
for tracing the simulation process. Figure 1 shows network scheme and results of a simple 
client-server simulation running on SSFNet platform. 
 

 
Fig. 1: The NetSim application window shows results of a simple SSFNet client-server 

simulation. 

The advantages and disadvantages of using NetSim come from the properties of Java 
programming language. The object-oriented program code is simple to read and easy to 
change and simulations can be run under different operating systems, including Windows or 
Linux. The application NetSim and simulation platform SSFNet, however, require a huge 
memory space when modelling complex network environments. 

6 CONCLUSIONS 

The paper introduces a Java-based platform for network modelling and simulations 
SSFNet. SSFNet kernel and its source code can be easily downloaded and installed from 
www.sffnet.org.   

NetSim is a Java-based graphical user interface that was developed to graphically 



  

demonstrate the results of SSFNet simulation process. The Jgraph (www.jgraph.com) graphics 
library is used to picture the detailed network scheme. 

NetSim is fully open for further adjustments and improvements. Adding the possibility 
to trace the simulation process could be one of them. 

The NetSim package and the installation instructions can be downloaded from the 
authors web site (http://hawk.cis.vutbr.cz/~huczala/vizualizace). 

REFERENCES 

[1] HUCZALA, M. Vizualization of routing algorithms in TCP/IP network environments, 
final report to the FRVŠ grant project, Brno 2005.  

[2] SSFNet Community. SSFNet 1.3 DML Reference, www.ssfnet.org.  

[3] SSFNet Community. Implementation and Validation Tests, 
http://www.ssfnet.org/Exchange/tcp/index.html.  

[4] SSFNet Community. SSFNet software exchange, Package overview, 
http://www.ssfnet.org/exchangePage.html.  

 

 


