
FORMAL VERIFICATION OF A VHDL HARDWARE
COMPONENT

Petr HLÁVKA, Master Degree Programme (5)
Dept. of Intelligent Systems, FIT, BUT

E-mail: xhlavk00@stud.fit.vutbr.cz

Supervised by: Dr. Tomáš Vojnar

ABSTRACT

The work presented here is a part of the efforts to apply formal verification in the
process of developing an FPGA-based network device in the Liberouter project. We briefly
characterise the verification framework introduced in the project and then describe in more
detail the verification we propose for one interesting component – namely an asynchronous
FIFO queue.

1 INTRODUCTION

The rising complexity of computer based systems together with the increasing stress
on their correctness (linked to more and more critical tasks solved by the systems) lead
to a search for better methods of ensuring error-freeness. Along with traditional methods
like testing and simulation, formal verification can be used for checking system proper-
ties in every possible run. The most widely used automatic verification method is model
checking [1], which is based on a complete state space search for reachable states violating
desired properties often specified using temporal logics, e.g., LTL or CTL.

2 THE VERIFICATION PROCESS IN THE LIBEROUTER PROJECT

The aim of the Liberouter project [2] is to develop a multigigabit PC-based IP pro-
tocol router. In order to achieve a higher throughput, hardware accelerator cards with field
programmable gate arrays (FPGA) are used. The most of the network functions (e.g.,
packet manipulation, forwarding or monitoring) are implemented using the VHDL hard-
ware specification language directly in the hardware accelerators. Proving correctness of
this hardware design is the task of the Liberouter formal verification group.

One of the verification approaches used in the Liberouter project is model checking
on the VHDL code. The others are based on abstract models of some key functionalities
of the considered devices which is, however, beyond the scope of this paper. There is
no available model checking tool capable of reading model specification from the VHDL

subset used in the project. That is why the verification group proposed a translation [3]
including synthesis into the Verilog hardware description language that can be used in con-
nection with the Cadence SMV model checker. We developed also several tools supporting
the whole verification process, which includes the conversion, specification of properties,
iterative verification and generating verification reports.

3 THE ASFIFO_DIST COMPONENT

In this paper, we present the verification of one particular component – namely the
asfifo_dist (Figure 1). This component is an implementation of an asynchronous FIFO
queue using the basic cells (look-up tables) of the FPGA as the memory for queue items.
The number of items and their width can be adjusted as generic parameters of the queue.

An interesting feature of the queue is that it

Figure 1: Asfifo_dist block scheme.

provides, along with the standard EMPTY and FULL
queue status signals, also 2-bit width STATUS in-
formation about the remaining FIFO capacity. The
design is complexified due to presence of two asyn-
chronous clock signals and thus the formal verifica-
tion is really justified here. Depending on the read
and write clock’s shift, the delay of the queue status
signals may differ within specified bounds [4], e.g.,
the remaining FIFO capacity signal has delay up to two write clocks.

4 VERIFICATION OF ASFIFO_DIST

Due the ambiguous delay of the queue status signals, the temporal logic formulae
describing the proper signal behaviour would be hard to construct. Instead of this, we have
decided to create an observer process using the SMV language that models the desired
minimal delay component behaviour. The observer is counting the number of items in the
FIFO (variable counter) and stores its previous value for two writing clocks (variable
our_status). Using these two process variables, temporal logic formulae comparing
the behaviour of the observer and the component can be easily constructed.

The verified properties were chosen according to the particular signal’s specification,
and also general properties like the overflow/underflow in the number of items or the pos-
sibility to fill the FIFO up to the maximum number of items were added. Because of the
state space complexity, only the control (not data) signals were verified. The complete list
of the verified properties can be found in the verification report [5]. Here, we list examples
of some of the verified properties including CTL or LTL formulae:

• It is not possible to read from an empty FIFO (underflow):
G (~(counter <= -1))

• It is possible to store the specified maximum number of items in the FIFO:
AG EF (counter = ITEMS - 1)

• The specified correct behaviour of the EMPTY signal (i.e., it is set/unset properly) is
divided into the set up, hold on, unset and hold off phases:

– G ((counter = ITEMS - 1 & ~full & ~writer_clk & X writer_clk) -> X full)
– G (full -> (G (counter = ITEMS - 1) & full) |

(((counter = ITEMS - 1) & full) U (counter ~= ITEMS - 1)))
– G (((counter ~= ITEMS - 1) & full & ~writer_clk & X writer_clk) ->

((X X ~full) | (X (writer_clk U
(~writer_clk U (writer_clk U ~full))))))

– G (~full -> (G (counter < ITEMS - 1) & ~full) |
(((counter < ITEMS - 1) & ~full) U
((counter = ITEMS - 1) | gsr)))

4.1 VERIFICATION RESULTS

As the number of items of the FIFO and its width can be parametrised, the verification
should be run for every used combination in the project. We consider only the queue
lengths (number of stored items) of power of two because the parameter specifies the bit
width. We also omit the item width parameter because only the control (not data) signals
are verified. The verification run durations for selected properties and queue lengths are
shown in Table 1. Due to the state explosion problem, it is not possible to verify some
of the STATUS signal properties for more than 32 items and some of the other signals
properties for more than 64 items.

Property tIT EMS=8 tIT EMS=16 tIT EMS=32 tIT EMS=64
FIFO underflow 0.49 3.88 26.65 143.64
Reach full 1.03 9.15 54.98 301.93
Empty set up 0.69 4.32 29.34 167.78
Empty hold on 3.18 14.74 53.67 242.33
Empty unset 1.84 10.71 66.55 282.07
Empty hold off 10.33 62.80 123.60 562.91
Status 6.53 81.38 2133.35 n/a

Table 1: Verification time [s] of selected properties - Intel Xeon 3.2 GHz, 2 GB RAM.

5 CONCLUSION

The work shows that the chosen verification process on the VHDL code is applicable
even to asynchronous components, but it meets its boundary in verification of the complex
STATUS signal properties. The component works according to the specification, all pro-
posed properties were successfully verified. Due to the two clock delay, the STATUS signal
should only be used in queues with more than 64 items where its value is more precise.

REFERENCES

[1] Clarke, E. M., Grumberg, O., Peled, D. A.: Model Checking, Cambridge, Massachusetts, The MIT Press
1999, ISBN 0-262-03270-8

[2] Liberouter: The Liberouter Project WWW pages, http://www.liberouter.org

[3] Kratochvíla, T., Řehák, V., Šimeček, P.: Verification of COMBO6 VHDL Design, Technical report
number 17/2003, CESNET 2003

[4] Xilinx: FIFOs Using Virtex-II Block RAM, Xilinx Application Note XAPP258 (v1.4), Xilinx 2005,
http://direct.xilinx.com/bvdocs/appnotes/xapp258.pdf

[5] Hlávka, P.: Asfifo_dist Verification Report (2005-11-17),
http://www.liberouter.org/formal_verification/work/asfifo_dist_ver.html

