TOWARDS APPLYING MONA IN ABSTRACT
REGULAR TREE MODEL CHECKING

Adam Rogalewicz, Doctoral Degree Programme
Dept. of Intelligent Systems, FIT, BUT
E-mail: rogalew@fit.vutbr.cz

Supervised by: Prof. MilaGeska, Dr. Tomas \ojnar

ABSTRACT

We consider the problem of automated formal verification of modern concurrent
software systems. Dealing with such systems, which involves handling unbounded dy-
namic instantiation, recursion, etc., naturally leads to a need of dealing with infinite state
spaces. We suppose states of such systems to be encoded terms with a tree structure and we
would like to use the abstract regular tree model checking method for dealing with infinite
sets of states. This paper presents an ongoing research on application of abstract regular
model checking in the infinite state systems verification, and possibility to use the Mona
GTA library for experiments.

1 INTRODUCTION

The complexity of the modern concurrent software (e.g. control systems, operating
systems) is rising, and the requirements on its correctness are also higher and higher. The
through testing takes a lot of resources, and in many cases, it can not discover all possible
bugs. New approaches, how to prove and guarantee correctness, have to be established.
One of such approaches is the formal verification and especially the highly automated
approach of model checking. Up to now a lot of work in the model checking of systems
with finite state spaces was done. However, many features of the modern software (e.g.,
recursion, dynamic data structures) imply that the state space is not finite. Verification of
such systems is not easy. There were proposed many methods, which are more or less
successful on some restricted classes of such systems, and a lot of research is on the way
in this area.

One of the highly promising approaches so far proposed for verification of parametric
or infinite state systems regular model checkin{] (other methods include, e.g., the use
of the so-called cut-offs, network invariants, automated abstraction, etc.).

In the regular model checking, the system configuration is represented as a word
over a finite alphabet. If the infinite set of configurations is regular, it can be described by
a regular language and finite automaton (For non-regular sets can be used a regular over-
approximation). The program behaviour is described by a finite transducer. Sets of initial
and bad configurations are also described by finite automata.

Verification is then based on computing the set of reachable states from initial config-
urations by repeatedly applying the transducers on the set of initial states (or on repeatedly
composing the transducers with the aim of computing the reachability relation). During
the whole computation is being checked intersection with set of bad states. If the intersec-
tion is not empty, computation will be interrupted. As the problem being solved in regular
model checking is in general undecidable, the metthoels not necessarily terminat&o
facilitate the termination, variowscceleration methodsave been proposed. They include,
e.g., widening [3], collapsing of automata states based on the history of their creation by
composing transducers [2], or abstraction of automata [5].

The basic approach of regular model checking can be generalized in multiple ways
including the use of more general classes of automata than finite state automata [8] or
automata on more complex structures than words—e.g., on trees [4, 1]. The long-term
goal of our work is to generalize the approach of abstract regular model checking, which
currently belongs among the most efficient ways of regular model checking on words to
trees and to apply it in verification of the modern concurrent software.

Abstract regular model checking (ARMC) [5] is a combination of regular model
checking and abstractions. After each transduction, current automaton is abstracted. Ab-
stractions are one of the successful acceleration techniques in regular model checking. The
abstract regular model checking method was successfully used by A.Bouajjani et al for ver-
ification of programs with 1-selector dynamic data structures. They proposed encoding of
a restricted heap into words and program statements into the finite state transducers [10].
Now we would like to generalise this approach to more general data structures. Words
and finite automata is not suitable to do this, so we are interested in regular tree automata.
We work on methods how to encode a heap into a tree and program statements into tree
transducers. It is much more complicated than in the linear case.

For experimental purposes, it is necessary to have a suitable tool for handling tree
automata and tree transducers. First, we decided to use the Timbuk library [9]. Prototype
implementation of tree transducers was done, but tests with abstract regular model check-
ing showed complexity problems. The most problematic part is determinisation of tree
automata. We decided to use the guided tree automata [12] library, which is a part of the
Mona project [12]. This library was written with a high interest in efficiency. Structure pre-
serving transducers can be encoded in this library like ordinal automata, and transduction
can be performed by standard automata operation.

This paper presents an ongoing research on application of abstract regular model
checking in the infinite state systems verification.

2 MONA

Mona [12] is a tool which was designed for decision of WS1S and WS2S (Weak
Second-order Theory of One or Two succesors) formulas validity. WS1S, is a fragment
of arithmetic augmented with second-order quantification over finite sets of natural num-
bers. Mona is based on the relation between the logic and the finite (tree) automata theory.
For each WS1S formula, there exists a corresponding finite automaton. For each WS2S
formula there exists a corresponding tree automaton. Validity of a formula is equal to non-
emptiness of the corresponding automata. The conjunction of formulas is related to the

intersection of automata, the formulas disjunction to the automata union, the negation to
the automata complementation. Mona receives a formula, converts it into the correspond-
ing automaton and checks for emptiness.

The implementation of Mona contains two interesting libraries. One for finite au-
tomata and one for guided tree automata (GTA). Both are based on BDDs (binary decision
diagrams) with a strong emphasis to efficiency and complexity.

We are going to use the GTA library to manipulate bottom-up tree automata. (Class
of GTA contains whole class of bottom-up tree automata). Bottom-up tree automaton [6]
is a generalisation of finite automaton. It is a finite state machine, which starts with several
heads (one at each leaf), and read the tree from leafs to the root.

2.1 TRANSDUCERS IN MONA LIBRARY

The GTA library does not provide transducers. However, as we proposed here, it
allows us to encode structure preserving transducers like automata. In the GTA library,
a symbol is a node is encoded like several binary numbers. When we work with a logic
in Mona, each number corresponds to one variable. This can be used for transduction.
Normal automata read just the first variable - the second one is equal to an arbitrary word
of {0,1}*. Transducers have in the first variable input symbols and in the second one
output symbols. The transduction can thus be done in the following steps: (1) Intersection
between the transducer and the original automaton. (2) Projection over the first variable.
(3) Rename of the second variable in the result on the first one. The figure 1 demonstrate
the transduction of one rule.

Automaton
1: 10001

Result of transducetion
1: 10001 111111

Transducer Intersection | 20 L1 | projection | 2 11111 Label
1: 10001 Change

2: 11111

Figure 1: Transduction in GTA Mona library

2.2 ABSTRACTIONS ON TREES

The generatization of abstract regular model checking to abstract regular tree model
checking required to define abstractions on trees. In [5], some abstractions on words were
discussed. Abstractions are usually based on a state collapsing (instead of two or more
states is left one with behaviour of all of them). We are working on their generalization on
trees. So for, we have prototypely implemented finite deep trees abstraction (equal to finite
length words). Two states are collapsed in case that the languages of finite deep, which are
accepted by this states are exactly the same. A work on the other, more complex methods
is on the way.

3 APPLICATION OF TREE LANGUAGES

We discuss here the applications of abstract regular tree model checking, which we
are now developing. First possibility is to use process rewrite systems (PRS) [7] as a

formalism between programs and tree automata. Program configuration is represented in
PRS by a process term, which has naturally tree structure. A set of such terms can be
described as a tree automaton. A program behaviour described by a PRS can be (for some
class of PRSs) described as tree transducers. Then we can use abstract regular tree model
checking to verify this model. This idea was described in [11].

We are now interested in the use of the regular mode checking [5] for fully auto-
matic verification of programs with dynamic data structures (i.e. programs with pointers)
by means of abstract regular model checking as a generalization of the method applied
in 1-selector data structures described in [10]. In thel-selector case, data are represented
like words over a finite alphabet. A word contains several parts separated by the symbol
“|*. The first part describes pointer variables, which point to null, the second one unde-
fined pointer variables. After this two parts, there are several parts, which describes list
sequences. Each list sequence ends by “#” - null pointer, or “I* - undefined pointer. For
example the sequence|y|z///#" describes a configuration, where “x“ is a null pointer,

“y” is an undefined pointer, and “z* points to a sequence of 3 elements. This sequence ends
by a null pointer.

To describe a list sharing, back pointers, etc, markers were introduced. A finite
number of marker pairs (each pair contains filoen marker my, and theto marker m) is
defined. Thdrom markercan be placed just at the end of a list sequence (instead of “#”, or
“I"). The to markercan be placed at any position in a list sequence. Each marker pair can
occur at most once in a word describing a program state. For example, the list in Figure 2
can be described as a worldX/ /my/ /#ly//ms”.

X

null

Figure 2: A list with sharing

The encoding has not a canonical form, and so one list can be encoded in different
ways. The list from fig 2 can also be described like the wopahty / /#/x//nt|y//ms*. So
during the computation, it is necessary to count with all possible encodings of the set. This
method was successfully tested on a series of examples (e.qg. list reversal, insertsort, ...).

Now we are working on encoding configuration of programs with more selectors
into tree automata and its behaviour into tree transducers. There is a possibility to use
markers, as in the case of words. In the case of words, it is enough to have a finite number
of markers (equal to the number of pointer variables). In the case of trees, there is an
unbounded number of leaves. It causes, that we are able to describe just a very limited
set of program configurations (e.g. doubly linked list can not be described by markers).
An other possibility is to use some kind of pushdown tree automata, which allow us to
have an unbounded number of markers (a marker is a sequence of letters). Unfortunately,
even the class of pushdown word automata is not closed under intersection, and some other
interesting properties are not decidable. It is necessary to propose some other mechanisms.

Currently, we are working on two approaches. The first approach use special symbols
calledpointer descriptorsThey are placed in the tree, and described pointer direction rel-
atively to the tree shape. The second one encode program configuration into two machines.

One bottom-up tree automaton, which describes data without extra pointers, and one finite
state automaton, which describes extra pointers. This two automata are connected by a
finite number of states (a final state of the tree automaton is an initial state of the finite
automaton).

4 CONCLUSION

We are going to use regular tree model checking method for automatic verification of
programs. This methods on words was successfully used for verification of programs with
dynamic data structures with 1-selector. We are now going to generalise this approach to
data structures with more selectors. It is not easy to do it at words, so we choosed regular
tree languages and automata. For experiments is necessary to have a tool for handling with
tree automata and transducers. We choosed the Mona GTA library, which allows us to
handle bottom-up tree automata and structure preserving transducers.

ACKNOWLEDGEMENT

The work was supported by the Grant Agency of the Czech Republic under the con-
tracts 102/04/0780 and 102/03/D211.

REFERENCES
[1] Abdulla, P., Jonsson, B., Mahata, P., d'Orso, J.: Regular Tree Model Checking. In Proc.
CAV’'02, LNCS 2404, 2002.

[2] Abdulla, P., d’'Orso, J., Jonsson, B., Nilsson, M.: Algorithmic Improvements in Regular
Model Checking. In Proc. CAV’03, LNCS 2725, 2003.

[3] Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T..: Regular Model Checking. In Proc.
CAV’'00, LNCS 1855, 2000.

[4] Bouajjani, A., Touili, T.: Extrapolating Tree Transformations. In Proc. CAV’'02, LNCS 2404,
2002.

[5] Bouajjani, A., Habermehl, P., Vojnar, T.. Abstract Regular Model Checking, In Proc.
CAV'04, LNCS 3114, 2004.

[6] Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:
Tree Automata Techniques and Applications, http://www.grappa.univ-lille3.fr/tata.

[7] Esparza, J.: Grammars as processes. In Formal and Natural Computing, LNCS 2300, 2002.

[8] Fisman, D., Pnueli, A.: Beyond Regular Model Checking. In Proc. FSTTCS'01, LNCS 2245,
2001.

[9] Genet, T.: Timbuk, atree automata library,
http://www.irisa.fr/lande/genet/timbuk.

[10] Bouajjani, A., Habermehl, P., Moro, P., Vojnar, T.: Verifying Programs with Dynamic 1-
Selector-Linked Structures in Regular Model Checking In Proc. of ACAS’05, to appear in
LNCS, April 2005.

[11] Rogalewicz, A., Vojnar, T.: Tree Automata In Modelling And Verification Of Concurrent
Programs In Proc. of ASIS 2004, MARQ, 2004.

[12] Klarlund, N., Muller, A., Schwartzbach, M. L.: The MONA Project
http://www.brics.dk/mona/

