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ABSTRACT 
This paper presents new models for all recursive enumerable languages. These models 

are based on multigenerative grammar systems that simultaneously generate several strings in 
a parallel way. The components of these models are context-free grammars, working in a 
leftmost way. The rewritten nonterminals are determined by a finite set of nonterminal 
sequences. 

1 INTRODUCTION 

The formal language theory has recently intensively investigated various grammar 
systems, which consist of several cooperating components, usually represented by grammars. 
Although this variaty is extremely broad, all these grammar systems always makes a 
derivation that generates a single string. In this paper, however, we introduce grammar 
systems that simultaneously generate several strings, which are subsequently composed in a 
single string by some common string operation, such as concatenation. 

More precisely, for a posisitive integer n, an n-generative grammar system discussed in 
this paper works with n context-free grammatical components in a leftmost way⎯that is, in 
every derivation step, each of these components rewrites the leftmost nonterminal occurring 
in its current sentetial form. These n leftmost derivations are controled n-tuples of 
nonterminals or rules. Under a control like this, the grammar system generates n strings, out 
of which the strings that belong to the generated language are made by some basic operations. 
Specifically, these operations include union, concatenation and a selection of the string 
generated by the first component. 

2 DEFINITIONS 

Definition 2.1: An n-multigenerative nonterminal-synchronized grammar system (n-MGN) is 
an n+1 tuple, 

Γ = (G1, G2, …, Gn, Q), 

where Gi = (Ni, Ti, Pi, Si) is a context-free grammar for each i = 1, …, n, and Q is a finite set 

  



of n-tuples of the form (A1, A2, …, An), where Ai ∈ Ni for all i = 1, …, n. Let Γ = (G1, G2, …, 
Gn, Q) be an n-MGN. Then, a sentential n-form of n-MGN is an n-tuple of the form χ = (x1, 
x2, …, xn), where xi ∈ (Ni ∪ Ti)* for all i = 1, …, n. Let χ = (u1A1v1, u2A2v2, …, unAnvn) and χ  
= (u1x1v1, u2x2v2, …, unxnvn) be two sentential n-form, where Ai ∈ Ni, ui ∈ Ti

*, and vi, xi ∈ (Ni 
∪ Ti)* for all i = 1, …, n. Let Ai → xi ∈ Pi for all i = 1, …, n and (A1, A2, …, An) ∈ Q. Then χ 
directly derives χ  in Γ, denoted by χ ⇒ χ . In the standard way, we generalize ⇒ to ⇒k, k ≥ 
0, ⇒+, and ⇒*. 

The n-language of  Γ, n-L(Γ), is defined as 

n-L(Γ) = {(w1, w2, …, wn): (S1, S2, …, Sn) ⇒* (w1, w2, …, wn), wi ∈ Ti
* for all i = 1, …, n}. 

The language generated by Γ in the union mode, Lunion(Γ), is defined as 

Lunion(Γ) = {w: (w1, w2, …, wn) ∈ n-L(Γ), w ∈{wi: i = 1, …, n}}. 

The language generated by Γ in the concatenation mode, Lconc(Γ), is defined as 

Lconc(Γ) = {w1w2…wn: (w1, w2, …, wn) ∈ n-L(Γ)} 

The language generated by Γ in the first mode, Lfirst(Γ), is defined as 

Lfirst(Γ) = {w1: (w1, w2, …, wn) ∈ n-L(Γ)} 

Example: Γ = (G1, G2, Q), where G1 = ({S1, A1}, {a, b, c}, {S1 → aS1, S1 → aA1, A1 → bA1c, 
A1 → bc}, S1), G2 = ({S2, A2}, {d}, {S2 → S2A2, S2 → A2, A2 → d}, S2), Q = {(S1, A1), (S2, A2)} 
is a 2-multigenerative nonterminal-synchronized grammar system. Notice that 2-L(Γ) = 
{(anbncn, dn): n ≥ 1}, Lunion(Γ) = {anbncn: n ≥ 1} ∪ {dn: n ≥ 1}, Lconc(Γ) = {anbncndn: n ≥ 1}, 
and Lfirst(Γ) = {anbncn: n ≥ 1}. 

 

Definition 2.2: An n-multigenerative rule-synchronized grammar system (n-MGR) is n+1 
tuple 

Γ = (G1, G2, …, Gn, Q), 

where Gi = (Ni, Ti, Pi, Si) is a context-free grammar for each i = 1, …, n, and Q is a finite set 
of n-tuples of the form (p1, p2, …, pn), where pi ∈ Pi for all i = 1, …, n. A sentential n-form 
for n-MGR is defined as the sentential n-form for an n-MGN. Let Γ = (G1, G2, …, Gn, Q) be 
an n-MGR. Let χ = (u1A1v1, u2A2v2, …, unAnvn) and χ  = (u1x1v1, u2x2v2, …, unxnvn) are two 
sentential n-form, where Ai ∈ Ni, ui ∈ Ti

*, and vi, xi ∈ (Ni ∪ Ti)* for all i = 1, …, n. Let pi: Ai 
→ xi ∈ Pi for all i = 1, …, n and (p1, p2, …, pn) ∈ Q. Then χ directly derives χ  in Γ, denoted 
by χ ⇒ χ . An n-language for any n-MGR is defined as the n-language for any n-MGN, and a 
language generated by n-MGN in the X mode, for each X ∈ {union, conc, first}, is defined as 
the language generated by n-MGR in the X mode. 

Example: Γ = (G1, G2, Q), where G1 = ({S1, A1}, {a, b, c}, {1: S1 → aS1, 2: S1 → aA1, 3: A1 
→ bA1c, 4: A1 → bc}, S1), G2 = ({S2}, {d}, {1: S2 → S2S2, 2: S2 → S2, 3: S2 → d}, S2), Q = 
{(1, 1), (2, 2), (3, 3), (4, 3)}, is 2-multigenerative rule-synchronized grammar system. Notice 
that 2-L(Γ) = {(anbncn, dn): n ≥ 1}, Lunion(Γ) = {anbncn: n ≥ 1} ∪ {dn: n ≥ 1}, Lconc(Γ) = 
{anbncndn: n ≥ 1}, and Lfirst(Γ) = {anbncn: n ≥ 1}. 

  



3 RESULTS 

Algorithm 3.1: Conversion of n-MGN to n-MGR 
• Input: n-MGN Γ = (G1, G2, …, Gn, Q) 

• Output: n-MGR Γ  = (G1, G2, …, Gn, Q ); n-L(Γ) = n-L( Γ )    

• Method: 
Let Gi = (Ni, Ti, Pi, Si) for all i = 1, …, n, then: 

Q := {(A1 → x1, A2 → x2, …, An → xn): Ai → xi ∈ Pi for all i = 1, …, n, and  
         (A1, A2, …, An) ∈ Q } 

 

Algorithm 3.2: Conversion of n-MGR to n-MGN 
• Input: n-MGR Γ = (G1, G2, …, Gn, Q) 

• Output: n-MGN Γ  = ( 1G , 2G , …, nG , Q ); n-L(Γ) = n-L( Γ ) 

• Method:  
Let Gi = (Ni, Ti, Pi, Si) for all i = 1, …, n, then: 

iG  = ( iN , Ti, iP , Si) for all i = 1, …, n, where: 

iN  := {<A, x>: A → x ∈ Pi} ∪ {Si},  

iP  := {<A, x> → y: A → x ∈ Pi, y ∈ τ i(x)} ∪ {Si → y: y ∈ τ i(Si)}, 

where τi is a substitution from Ni ∪ Ti to iN  ∪ Ti defined as: 

τi(a) = {a} for all a ∈ Ti; τi(A) = {<A, x>: A → x ∈ Pi} for all A ∈ Ni. 

Q := {(<A1, x1>, <A2, x2>, …, <An, xn>: (A1 → x1, A2 → x2, …, An → xn) ∈ Q} ∪   

         {(S1, S2, …, Sn)} 

 

Claim 3.3: Let Γ be any n-MGN, let Γ  be any n-MGR and let n-L(Γ) = n-L( Γ ). Then, LX(Γ) 
= LX( Γ ), for each X ∈ {union, conc, first}. 

Proof:  

I. We prove that Lunion(Γ) = Lunion( Γ ): Lunion(Γ) = {w: (w1, w2, …, wn) ∈ n-L(Γ), w ∈{wi: i = 
1, …, n}} = {w: (w1, w2, …, wn) ∈ n-L( Γ ), w ∈{wi: i = 1, …, n}} = Lunion( Γ ). 

II. We prove that Lconc(Γ) = Lconc( Γ ): Lconc(Γ) = {w1w2…wn: (w1, w2, …, wn) ∈ n-L(Γ)} = 
{w1w2…wn: (w1, w2, …, wn) ∈ n-L( Γ )} = Lconc( Γ ). 

III. We prove that Lfirst(Γ) = Lfirst( Γ ): Lfirst(Γ) = {w1: (w1, w2, …, wn) ∈ n-L(Γ)} = {w1: (w1, 
w2, …, wn) ∈ n-L( Γ )} = Lfirst( Γ ). 

 

  



Corollary 3.4: The class of languages generated by n-MGN in the X mode, where X ∈ {union, 
conc, first} is equivalent with the class of language generated by n-MGR in the X mode. 

Proof: This corollary follows from Algorithm 3.1, Algorithm 3.2 and Claim 3.3. 

 
Theorem 3.5: For every recursive enumerable language L over an alphabet T there exist a 2-
MGR, Γ = (( 1N , T, 1P , S1), ( 2N , T, 2P , S2), Q) such that: 

1) L = {w: (S1, S2) ⇒* (w, w)},  

2) {w1w2: (S1, S2) ⇒* (w1, w2), w1, w2 ∈ T*, w1 ≠ w2} = ∅. 

 
Theorem 3.6: For every recursive enumerable language L over an alphabet T there exist a 2-
MGR, Γ = (G1, G2, Q) such that: Lunion(Γ) = L. 

Proof: By the Theorem 3.5 holds: For every recursive enumerable language L over an 
alphabet T there exist a 2-MGR, Γ  = ((N1, T, P1, S1), (N2, T, P2, S2), Q) such that L = {w: (S1, 
S2) ⇒* (w, w)} and {w1w2: (S1, S2) ⇒* (w1, w2), w1, w2 ∈ T*, w1 ≠ w2} = ∅. 

Let Γ = Γ . Then, Lunion(Γ) = {w: (S1, S2) ⇒* (w1, w2), wi ∈ T* for i = 1, 2, w ∈ {wi: i = 1, 2}} 
= {w: (S1, S2) ⇒* (w, w), w ∈ T*} ∪ {w: (S1, S2) ⇒* (w1, w2), wi ∈ T* for i = 1, 2, w ∈ {wi: i = 
1, 2}, w1 ≠ w2} = {w: (S1, S2) ⇒* (w, w), w ∈ T*} ∪ ∅ = {w: (S1, S2) ⇒* (w, w), w ∈ T*} = L 

 
Theorem 3.7: For every recursive enumerable language L over an alphabet T there exist a 2-
MGR, Γ = (G1, G2, Q) such that: Lfirst(Γ) = L. 

Proof: By the Theorem 3.5 holds: For every recursive enumerable language L over an 
alphabet T there exist a 2-MGR, Γ = ((N1, T, P1, S1), (N2, T, P2, S2), Q) such that L = {w: (S1, 
S2) ⇒* (w, w)} and {w1w2: (S1, S2) ⇒* (w1, w2), w1, w2 ∈ T*, w1 ≠ w2} = ∅. 

Let Γ = Γ . Then, Lfirst(Γ) = {w1: (S1, S2) ⇒* (w1, w2), wi ∈ T* for i = 1, 2} = {w: (S1, S2) ⇒* 
(w, w), w ∈ T*} ∪ {w1: (S1, S2) ⇒* (w1, w2), wi ∈ T* for i = 1, 2, w1 ≠ w2} = {w: (S1, S2) ⇒* (w, 
w), w ∈ T*} ∪ ∅ = {w: (S1, S2) ⇒* (w, w), w ∈ T*} = L 

 

Theorem 3.8: For every recursive enumerable language L over an alphabet T there exist a 2-
MGR, Γ = (G1, G2, Q) such that: Lconc(Γ) = L. 

Proof: By the Theorem 3.5 holds: For every recursive enumerable language L over an 
alphabet T there exist a 2-MGR, Γ  = ((N1, T, P1, S1), (N2, T, P2, S2), Q) such that: L = {w: (S1, 
S2) ⇒* (w, w)} and {w1w2: (S1, S2) ⇒* (w1, w2), w1, w2 ∈ T*, w1 ≠ w2} = ∅. 

Let G1 = (N1, T, P1, S1), G2 = (N2, ∅, 2P , S2), where 2P  = {A → g(x): A → x ∈ P2}, where g is 
a homomorphism from (N2 ∪ T) to N2 defined as: For all X ∈ N2: g(X) = X, for all X ∈ T: g(X) 
= ε. We prove that Lconc(Γ) = L. 

I. We prove that L ⊆ Lconc(Γ): Let w ∈ L. Then, there exists a sequence of derivation in 
Γ  (S1, S2) ⇒* (w, w), thus, there exist a sequence of derivations in Γ (S1, S2) ⇒* (w, g(w)). 
Because g(a) = ε for all a ∈ T, then g(w) = ε for all w ∈ T*. Thus, there exists a sequence of 
derivations (S1, S2) ⇒* (w, ε) in Γ. Hence, wε = w ∈ Lconc(Γ). 

  



II. We prove that Lconc(Γ) ⊆ L: Let w ∈ Lconc(Γ). Then, there exist a sequence of 
derivations (S1, S2) ⇒* (w, ε) in Γ, because G2 derives only empty string (or nothing). g(x) = ε 
for all x ∈ T*, so there exists a sequence of derivation in Γ  of the form: (S1, S2) ⇒* (w, x), 
where x is any string. Theorem 3.5 implies that x = w, thus: (S1, S2) ⇒* (w, w). Thus,  w ∈ L. 

4 CONCLUSION 

Let L(2-MGNX) and L(2-MGRX) denote the language families defined by 2-MGN in the 
X mode and 2-MGR in the X mode, respectively, where X ∈ {union, conc, first}, let L(RE) 
denote the family of recursive enumerable languages. From the previous results, we obtain 
L(RE) = L(MGNX) = L(MGRX). 

REFERENCES 
[1] Csuhaj-Varju, E.: Cooperating grammar systems. Power and Parameters, LNCS 812, 

Springer, Berlin, 67-84, 1994. 

[2] Csuhaj-Varju, E., Kelemen, J.: On the Power of Cooperation: a regular Representation 
of R. E. Languages, Theor. Computer Sci. 81, 305-310, 1991. 

[3] Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, Gh.: Grammar Systems: A 
Grammatical Approach to Distribution and Cooperation, Gordon and Breach, London, 
1994.  

[4] Csuhaj-Varju, E., Salomaa, A.: Networks of language processors: parallel 
communicating systems. EATCS Bulletin 66, 122-138, 1997. 

[5] Dassow, J., Paun, Gh., Rozenberg, G.: Grammar Systems. In Handbook of Formal 
Languages, Rozenberg, G. and Salomaa, A. (eds.), Volumes 2, Springer, Berlin 1997 

[6] Kleijn, H. C. M., Rozenberg, G.: On the Generative Power of Regular Pattern 
Grammars, Acta Informatica 20, 391-411, 1983.  

[7] Meduna, A.: Automata and Languages: Theory and Applications, Springer, London, 
2000. 

[8] Meduna, A.: Simultaneously One-Turn Two-Pushdown Automata, International Journal 
of Computer Mathematics 80, 679-687, 2003. 

[9] Paun, Gh., Salomaa, A., S. Vicolov, S.: On the generative capacity of parallel 
communicating grammar systems. International Journal of Computer Mathematics 45, 
45-59, 1992. 

[10] Paun, Gh., Santean, L.: Parallel communicating grammar systems: the regular case, 
Ann. Univ. Buc., Ser. Matem.-Inform. 38, 55-63, 1989. 

[11] Paun, Gh., Santean, L.: Further Remarks about Parallel Communicating Grammar 
Systems, International Journal of Computer Mathematics 34, 187-203, 1990. 

[12] Salomaa, A.: Formal Languages, Academic Press, New York, 1973.  

[13] Santean, L.: Parallel Communicating Systems, EATCS Bulletin, 160-171, 1990. 

[14] Vaszil, G.: On simulating Non-returning PC grammar systems with returning systems, 
Theoretical Computer Science (209) 1-2, 319-329, 1998. 

  


	INTRODUCTION
	DEFINITIONS
	RESULTS
	CONCLUSION

