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ABSTRACT

After a translation of an input string;, to an output stringy, a self-reproducing
pushdown transducer can make a self-reproducing step during which it mtvés input
tape and translates it. In this self-reproducing way, it can repeat the transiatiioes for
anyn > 1. This paper demonstrates that every recursively enumerable language can be
characterized by the domain or the range of the translation obtained from a self-reproducing
pushdown transducer that repeats its translation no more than three times.

1 INTRODUCTION

Self-reproducing pushdown transducer represents a natural modified version of an
ordinary pushdown transducer. The characterization described in the abstract is of some
interest because it does not hold in terms of ordinary pushdown transducers because the
domain or range obtained from any ordinary pushdown transducer is a context-free lan-
guage.

2 DEFINITIONS

A self-reproducing pushdown transdudsra 8-tupleM = (Q,T',%,Q, R, s, S, 0),
where( is a finite set of stateq; is a total alphabet suchth@&tNI' = @, ¥ C T"is an
input alphabet() C T"is an output alphabeR is a finite set ofranslation rulesof the form
urqw — ugpv With uy, ug, w,v € I' andq,p € @Q, s € Q is thestart state S € T is the
start pushdown symhaD C @ is the set oBelf-reproducing state\ configuration of M/
is any string of the forn$zqy$x, wherex, y, z € I'*, ¢ € @, and$ is a speciabounding
symbol($ ¢ QUT). If uyquw — uspv € R, y = Shuiquz$t, andx = $huspz$tv, where
h,ui,us,w,t,v,z2 € I', q,p € @, thenM makes aranslation stegfrom y to = in M,
symbolically written asy ;= x [uyqw — uspv] or, sSimplyy ;= x in M. If y = $hq$t,
andz = $hqt$, wheret,h € T*, ¢ € O, thenM makes aself-reproducing stefrom y
to z in M, symbolically written ag) ,= z. Writey = z if y ;= z ory ,= z. In The
standard manner, exteng to =", wheren > 0; then based og>" define=" and=-*. Let



w,v € I'*; M translatesw tov if $Ssw$ =* $¢$v in M. The translation obtained from/,
T(M), is defined ag’ (M) = {(w,v) : $Ssw$ =* $¢$v with w € T*, v € Q*, ¢ € Q}.
SetDomainT'(M)) = {w : (w,z) € T(M)} andRangéT'(M)) = {z : (w,z) € T(M)}.

3 RESULTS

Lemma 1. For every recursively enumerable languagde, there exists a left-extended
queue grammary, satisfyingL(Q) = L.

Proof. Recall that every recursively enumerable language is generated by queue grammar
(see [2]). Clearly, for every queue grammar, there exists an equivalent left-extended queue
grammar. Thus, this lemma holds. ]

Lemma 2. Let Q' be an left-extended queue grammar. Then there exists a left-extended
queue grammar) = (V,T,W, F, s, R), such thatL(Q') = L(Q),W = X UY U {1},
where X, Y, {1} are pairwise disjoint, and everu, b, z,c) € R satisfies either € V' —

T, beX, e (V-T),ce XU{l}oraceV -T, beYU{l},z €T ceY.Q
generates everl € L(Q) in this way

#aoqo

= ao#Toq1 [(a0, 90, 20, ¢1)]

= Ao F#T1q2 (a1, q1, 21, G2)]

= Ao . . . QFTRGk11 [(ak, Qs 2k, Q1))

= a1 - . . Apk1FFTk+1Y1 k42 [(@ht1, Qrt1, Y1, Qrot2)]

= A1 - . . QpQkt1 - - Uk m—1F Thtm—1Y1 - - - Ym—1Tk+m [(ak—i-m—la Qk+m—15Ym—1, Qk+m)]
= Qpay ...Aap0ky1 - - - ak+m#y1 <o YmGk+m1 [(ak+m7 Qk+m> Ym., Qk+m+1)]

wherek,m > 1, a; € V—-Tfori=0,....k+m, z; € (V-T)forj=1,...,k+m—
1, s = aoqo, ajz; = xjqz;forj =1,... k, ar...axTk = 20... 2k, Qpg1 ... Qg =
Ty G051+ -Qhom € W — Fandquims1 € F, 2z1,...,2 € V. =T)*, y1,..,Ym €
T, h =1y Ym-1Ym,> Q1 € {1}.

Proof. See Lemma 1 in [4]. ]

For brevity, the following proofs are only sketches, because the full proofs are too
long to fit in this paper.

Lemma 3. Let ) be a left-extended queue grammar satisfying the properties given in
lemma 2. Then, there exists a 2-self-reproducing pushdown transduGesuch that
DomainT'(M)) = L(Q) and Rangél'(M)) = {¢}.

Proof. LetG = (V, T, W, F, s, P) be a left-extended queue grammar satisfying the proper-
ties given in lemma 2. Without any loss of generality, assume{thdt} N (VU W) = &.

For some positive integern, define an injection,, from P to ({0,1}" — {1}") so that. is

an injective homomorphism when its domain is extendedd/)*; after this extension,



¢ thus represents an injective homomorphism frdn¥)* to ({0,1}" — {1}")*; a proof
that such an injection necessarily exists is simple and left to the reader. Basedefine
the substitutiony, from V' to ({0,1}" — {1}") so that for everys € V, v(a) = {c(p) :
p € P, p = (a,b,z,c)forsomer € V*; b,c € W}. Extend the domain of to V*.
Furthermore, define the substitutiom, from W to ({0,1}" — {1}") so that for every
qe W, ulq) = {up) :p € P, p=(a,b,x,c)forsomea € V, x € V*; b,c € W}.
Extend the domain gf to W*.

Construction 1 (of M). Introduce the self-reproducing pushdown transducer
= (Q7TU {07 178}7T7®7R727S70)

where@ = {o, f,z} U{(p,i) : p € W andi € {1,2}}, O = {o, f}, andR is constructed
by performing the following steps 1 through 6.

1. ifapgo = s,wherea ¢ V — T andge W — F,
then addSz — uS{(q, 1)w to R, for allw € u(qo) and allu € v(ay);

2. if (a,q,y,p) € P,wherea ¢ V —T, p,qe W — F,andy € (V —T)*,
then addS(q, 1) — uS(p, 1)w to R, for all w € p(p) andu € v(y);

3. foreveryg € W — F, addS(q,1) — S{q,2) to R

4. if (a,q,y,p) € P,wherea € V —T, p,qg e W — F,andy € T*,
then addS(q, 2)y — S(p,2)w to R, for allw € pu(p);

5. if (a,q,y,p) € P,wherea ¢ V —T, ge W — F, y € T*,andp € F,
then addS(q, 2)y — SoS to R;

6. addo0 — 0o, o1 — 1o, 0S — ¢, 0c — 0, lc = cl, Sc— f, 0f0 — f, 1f1 — f
to 2.

Claim 1. M accepts everyt € L(M) in this way

$S2y1Y2 - - Ym—1Ym S

= $90<Q07 1>y13/2 cee ymflym$t0 = $ngOtk+mS$
= $91 <q1, 1>y1y2 .. .ym_lym$t1 = $gk5tk+m05$
: t: $gk8tk+m0$

= Sgrlar Dy1ve - - Ym—1ymSti =" $uy Schoy

= 301(qk: 2112 - - Ym—1Ym St = Suq fSuy

= 395 (qr+1, >y1y2 Ym-1Ym St = Suq fur$

= 30k (42, 2)Y2 - - Ym—1YmStrso = Sug fro$

= $gk <Qk+m7 2>ym$tk+m = $uwfvw$

= $9xS08ty i S = $f%



in M’ Wherekvm > 17 qosq1s -+ Qk+m € W_Fa Yi,---,Ym € T*, tz S M(QO(th)
fori = 0,1,....,k +m; g; € v(dody...d;) withdy,...,d; € (V —T)* for j =
0,1,...71{3; dodldk = QoQy-...QAk+m Whereal,...,ak+m eV — T, do = ay,
and s = agqo; gx = tgem (thatis, v(apa; ... axm) and pu(qoqs - - - qrrm) are identi-
cal); v; € PrefiXu(qoqs - @rtm)s 114(qoq1 - - - Qesm)| — @) fOr i = 1,... 0 with v =
[1(qoqr - - - @m)|; uy € Suffikv(aoar . .. agim), [V(aoar ... agim)| —j) forj=1,..., @
with w = |v(apay - . . arem)|; = 1192 - Ym—1Ym-

Proof of the claim.Examine steps 1 through 6 of the construction/bf Notice that in
every successful computatioh/ uses the rules introduced in stepefore it uses the rules
introduced in step + 1, fori = 1,...,5. During $g;So$t,..,S =* $f$ only the rules of
6 are used. Recall these rule®. — 0o, 01 — 1o, 0S — ¢, 0c — 0, 1c — cl, Sc —
f, 0f0 — f, 1f1 — f. This computation implieg, = t..,,. As a result, the claim
holds. O

Let M accepts h € L(M) in the way described in the above
claim. Examine the construction of? to see that at this pointP con-
tains (a07q0720aq1)a sy (a'kac_Zkak)qk-‘rl)a (ak+17Qk+1>ylan+2)a SRR (ak:-‘rm—la

Qk+m—15 Ym—1, Qk+m)> (ak+m7 Qk+m> Ym Qk+m+1>’ where Z1,--5 2k € (V - T)*7 SO
G makes the generation df in the way described in lemma 2. Thus € L(G).
Consequently.(M) C L(G). Let G generates € L(G) in the way described in lemma
2. Then,M acceptsh in the way described in the above claim, 605) C L(M). As
L(M) C L(G)andL(G) C L(M), L(G) = L(M). From the above claim, it follows that
M is a 2-self-reproducing pushdown transducer. Thus, lemma 3 holds. Il

Lemma 4. Let () be a left-extended queue grammar satisfying the properties given in
lemma 2. Then, there exists a 2-self-reproducing pushdown transduGesuch that

DomainT'(M)) = {e} and Rangé€T'(M)) = L(Q).

Proof. LetG = (V,T, W, F, s, P) be a left-extended queue grammar satisfying the prop-
erties given in lemma 2.
Construction of M. Introduce the self-reproducing pushdown transducer

M= (Q,VU{S},@ T,R,zS5,0)

where@ = {z U {(p,i) : p € W,i € {1,11}} U{(L,4) : i € {1,...,11}}}, O =
{(1,3),(1,8)} and R is constructed by performing the following steps 1 through 6.

1. ifysqo = s,wherey e V —T andg e W — F,
then addSz — SS{qo,1)Sys to R

2. if (a,q,y,p) € P,wherea € V —T, pge W — F,andy € (V —T)*,
then addS{q,1) — aS{(p,1)yto R

3. add following rules ta?

S(1,1) — (1,2)S,a(1,2) — (1,2)a, S(1,2) — (1,3)S, (1,3)S — S(1,4),
(1,4)a — a(1,4), (1,4)S — (1,5)S, a(1,5) — (1,5)a, S(1,5) — S(1,6),
(1,6)a — a(1,6), (1,6)S — (1,7)S, a(1,7) — (1,T)a, S(1,7) — (1,8)S,
(1,8)S — S(1,9), (1,9)a — a(1,9), (1,9)S — (1,10), a(1,10)a — (1, 10)



4. if (a,q,y,p) € P,wherea € V —-T, p=1,qe W — F,andy € T,
then add:(1,10)S — (p, 11)y

5. if(a,q,y,p) € P,wherea € V —T, p,ge W — F,andy € T,
then addu(q, 11) — (p,11)yto R

6. if (a,q,y,p) € P,wherea ¢ V —-T, ge W — F,y € T*,andp € F,
then addSa(q,11) — (p,11)yto R

Proof of the claim.Examine steps 1 through 6 of the constructionfof Notice that in

every successful computation/ uses the rules introduced in stefefore it uses the

rules introduced in step+ 1, fori = 1,...,5. Thus, in greater detail, every success-

ful computation can be splitted into three main steps. In these steps the self-reproducing
pushdown transducer simulates the work of queue grammar. In the first step only the rules
of 1 and 2 are used. There are generated two strings. To the output tape is generated the
string of nonterminals and to the pushdown is generated the string of nonterminals that
the queue grammar rewrites until its state,s;. In the second step the generated strings
are swapped, reverted and compared using rules of 3. These rules simulates rewriting of
nonterminals in the queue grammar. After this simulation using one rule from 4 the self-
reproducing transducer reaches the last part of simulation. In the last part only rules of 5
(or 6 for the last move) are used. Using these rules the remaining nonterminals are trans-
lated into resulting string of terminals whereh is the string generated by G. Thus, the

claim holds. A detailed proof is left to the reader. O

O
Theorem 1. For every recursively enumerable language, L, there exists a 2-
self-reproducing pushdown transducel/, such that Domaiff’(M)) = L and
RangéT'(M)) = {} or DomainT'(M)) = {¢} and Rangél’'(M)) = L.
Proof. This theorem follows from lemmas 1, 2, 3 and 4. O
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