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ABSTRACT

After a translation of an input string,x, to an output string,y, a self-reproducing
pushdown transducer can make a self-reproducing step during which it movesy to its input
tape and translates it. In this self-reproducing way, it can repeat the translationn-times for
anyn ≥ 1. This paper demonstrates that every recursively enumerable language can be
characterized by the domain or the range of the translation obtained from a self-reproducing
pushdown transducer that repeats its translation no more than three times.

1 INTRODUCTION

Self-reproducing pushdown transducer represents a natural modified version of an
ordinary pushdown transducer. The characterization described in the abstract is of some
interest because it does not hold in terms of ordinary pushdown transducers because the
domain or range obtained from any ordinary pushdown transducer is a context-free lan-
guage.

2 DEFINITIONS

A self-reproducing pushdown transduceris a 8-tupleM = (Q,Γ,Σ,Ω, R, s, S,O),
whereQ is a finite set of states,Γ is a total alphabet such thatQ ∩ Γ = ∅, Σ ⊆ Γ is an
input alphabet,Ω ⊆ Γ is an output alphabet,R is a finite set oftranslation rulesof the form
u1qw → u2pv with u1, u2, w, v ∈ Γ∗ andq, p ∈ Q, s ∈ Q is thestart state, S ∈ Γ is the
start pushdown symbol, O ⊆ Q is the set ofself-reproducing states. A configuration ofM
is any string of the form$zqy$x, wherex, y, z ∈ Γ∗, q ∈ Q, and$ is a specialbounding
symbol($ /∈ Q ∪ Γ). If u1qw → u2pv ∈ R, y = $hu1qwz$t, andx = $hu2pz$tv, where
h, u1, u2, w, t, v, z ∈ Γ∗, q, p ∈ Q, thenM makes atranslation stepfrom y to x in M ,
symbolically written asy t⇒ x [u1qw → u2pv] or, simplyy t⇒ x in M . If y = $hq$t,
andx = $hqt$, wheret, h ∈ Γ∗, q ∈ O, thenM makes aself-reproducing stepfrom y
to x in M , symbolically written asy r⇒ x. Write y ⇒ x if y t⇒ x or y r⇒ x. In The
standard manner, extend⇒ to⇒n, wheren ≥ 0; then based on⇒n define⇒+ and⇒∗. Let



w, v ∈ Γ∗; M translatesw to v if $Ssw$⇒∗ $q$v in M . The translation obtained fromM ,
T (M), is defined asT (M) = {(w, v) : $Ssw$ ⇒∗ $q$v with w ∈ Σ∗, v ∈ Ω∗, q ∈ Q}.
SetDomain(T (M)) = {w : (w, x) ∈ T (M)} andRange(T (M)) = {x : (w, x) ∈ T (M)}.

3 RESULTS

Lemma 1. For every recursively enumerable language,L, there exists a left-extended
queue grammar,Q, satisfyingL(Q) = L.

Proof. Recall that every recursively enumerable language is generated by queue grammar
(see [2]). Clearly, for every queue grammar, there exists an equivalent left-extended queue
grammar. Thus, this lemma holds.

Lemma 2. Let Q′ be an left-extended queue grammar. Then there exists a left-extended
queue grammar,Q = (V, T, W, F, s, R), such thatL(Q′) = L(Q), W = X ∪ Y ∪ {1},
whereX,Y, {1} are pairwise disjoint, and every(a, b, x, c) ∈ R satisfies eithera ∈ V −
T, b ∈ X, x ∈ (V − T )∗, c ∈ X ∪ {1} or a ∈ V − T, b ∈ Y ∪ {1}, x ∈ T ∗, c ∈ Y . Q
generates everyh ∈ L(Q) in this way

#a0q0
⇒ a0#x0q1 [(a0, q0, z0, q1)]
⇒ a0a1#x1q2 [(a1, q1, z1, q2)]
...
⇒ a0a1 . . . ak#xkqk+1 [(ak, qk, zk, qk+1)]
⇒ a0a1 . . . akak+1#xk+1y1qk+2 [(ak+1, qk+1, y1, qk+2)]
...
⇒ a0a1 . . . akak+1 . . . ak+m−1#xk+m−1y1 . . . ym−1qk+m [(ak+m−1, qk+m−1, ym−1, qk+m)]
⇒ a0a1 . . . akak+1 . . . ak+m#y1 . . . ymqk+m+1 [(ak+m, qk+m, ym, qk+m+1)]

wherek,m ≥ 1, ai ∈ V −T for i = 0, . . . , k+m, xj ∈ (V −T )∗ for j = 1, . . . , k+m−
1, s = a0q0, ajxj = xj−1zj for j = 1, . . . , k, a1 . . . akxk = z0 . . . zk, ak+1 . . . ak+m =
xk, q0, q1, . . . qk+m ∈ W − F and qk+m+1 ∈ F, z1, . . . , zk ∈ (V − T )∗, y1, . . . , ym ∈
T ∗, h = y1y2 . . . ym−1ym, qk+1 ∈ {1}.

Proof. See Lemma 1 in [4].

For brevity, the following proofs are only sketches, because the full proofs are too
long to fit in this paper.

Lemma 3. Let Q be a left-extended queue grammar satisfying the properties given in
lemma 2. Then, there exists a 2-self-reproducing pushdown transducer,M , such that
Domain(T (M)) = L(Q) and Range(T (M)) = {ε}.

Proof. Let G = (V, T, W, F, s, P ) be a left-extended queue grammar satisfying the proper-
ties given in lemma 2. Without any loss of generality, assume that{0, 1} ∩ (V ∪W ) = ∅.
For some positive integer,n, define an injection,ι, from P to ({0, 1}n − {1}n) so thatι is
an injective homomorphism when its domain is extended to(V W )∗; after this extension,



ι thus represents an injective homomorphism from(V W )∗ to ({0, 1}n − {1}n)∗; a proof
that such an injection necessarily exists is simple and left to the reader. Based onι, define
the substitution,ν, from V to ({0, 1}n − {1}n) so that for everya ∈ V, ν(a) = {ι(p) :
p ∈ P, p = (a, b, x, c) for somex ∈ V ∗; b, c ∈ W}. Extend the domain ofν to V ∗.
Furthermore, define the substitution,µ, from W to ({0, 1}n − {1}n) so that for every
q ∈ W, µ(q) = {ι(p) : p ∈ P, p = (a, b, x, c) for somea ∈ V, x ∈ V ∗; b, c ∈ W}.
Extend the domain ofµ to W ∗.

Construction 1 (of M). Introduce the self-reproducing pushdown transducer

M = (Q, T ∪ {0, 1, S}, T, ∅, R, z, S, O)

whereQ = {o, f, z} ∪ {〈p, i〉 : p ∈ W andi ∈ {1, 2}}, O = {o, f}, andR is constructed
by performing the following steps 1 through 6.

1. if a0q0 = s, wherea ∈ V − T andq ∈ W − F ,
then addSz → uS〈q0, 1〉w to R, for all w ∈ µ(q0) and allu ∈ ν(a0);

2. if (a, q, y, p) ∈ P , wherea ∈ V − T, p, q ∈ W − F , andy ∈ (V − T )∗,
then addS〈q, 1〉 → uS〈p, 1〉w to R, for all w ∈ µ(p) andu ∈ ν(y);

3. for everyq ∈ W − F , addS〈q, 1〉 → S〈q, 2〉 to R

4. if (a, q, y, p) ∈ P , wherea ∈ V − T, p, q ∈ W − F , andy ∈ T ∗,
then addS〈q, 2〉y → S〈p, 2〉w to R, for all w ∈ µ(p);

5. if (a, q, y, p) ∈ P , wherea ∈ V − T, q ∈ W − F, y ∈ T ∗, andp ∈ F ,
then addS〈q, 2〉y → SoS to R;

6. addo0→ 0o, o1→ 1o, oS → c, 0c → c0, 1c → c1, Sc → f, 0f0→ f, 1f1→ f
to R.

Claim 1. M accepts everyh ∈ L(M) in this way

$Szy1y2 . . . ym−1ym$
⇒ $g0〈q0, 1〉y1y2 . . . ym−1ym$t0 r⇒ $gkSotk+mS$
⇒ $g1〈q1, 1〉y1y2 . . . ym−1ym$t1 t⇒ι$gkStk+moS$

... t⇒ $gkStk+mc$
⇒ $gk〈qk, 1〉y1y2 . . . ym−1ym$tk t⇒ι$u1Sc$v1
⇒ $gk〈qk, 2〉y1y2 . . . ym−1ym$tk t⇒ $u1f$v1
⇒ $gk〈qk+1, 2〉y1y2 . . . ym−1ym$tk+1 r⇒ $u1fv1$
⇒ $gk〈qk+2, 2〉y2 . . . ym−1ym$tk+2 ⇒ $u2fv2$

...
...

t⇒ $gk〈qk+m, 2〉ym$tk+m ⇒ $u$fv$$
t⇒ $gkSo$tk+mS ⇒ $f$



in M , wherek,m ≥ 1; q0, q1, . . . , qk+m ∈ W − F ; y1, . . . , ym ∈ T ∗; ti ∈ µ(q0q1 . . . qi)
for i = 0, 1, . . . , k + m; gj ∈ ν(d0d1 . . . dj) with d1, . . . , dj ∈ (V − T )∗ for j =
0, 1, . . . , k; d0d1 . . . dk = a0a1 . . . ak+m where a1, . . . , ak+m ∈ V − T, d0 = a0,
and s = a0q0; gk = tk+m (that is, ν(a0a1 . . . ak+m) and µ(q0q1 . . . qk+m) are identi-
cal); vi ∈ Prefix(µ(q0q1 . . . qk+m), |µ(q0q1 . . . qk+m)| − i) for i = 1, . . . , υ with υ =
|µ(q0q1 . . . qk+m)|; uj ∈ Suffix(ν(a0a1 . . . ak+m), |ν(a0a1 . . . ak+m)| − j) for j = 1, . . . , $
with $ = |ν(a0a1 . . . ak+m)|; h = y1y2 . . . ym−1ym.

Proof of the claim.Examine steps 1 through 6 of the construction ofR. Notice that in
every successful computation,M uses the rules introduced in stepi before it uses the rules
introduced in stepi + 1, for i = 1, . . . , 5. During$gkSo$tk+mS ⇒∗ $f$ only the rules of
6 are used. Recall these rules:o0 → 0o, o1 → 1o, oS → c, 0c → c0, 1c → c1, Sc →
f, 0f0 → f, 1f1 → f . This computation impliesgk = tk+m. As a result, the claim
holds.

Let M accepts h ∈ L(M) in the way described in the above
claim. Examine the construction ofR to see that at this pointP con-
tains (a0, q0, z0, q1), . . . , (ak, qk, zk, qk+1), (ak+1, qk+1, y1, qk+2), . . . , (ak+m−1,
qk+m−1, ym−1, qk+m), (ak+m, qk+m, ym, qk+m+1), where z1, . . . , zk ∈ (V − T )∗, so
G makes the generation ofh in the way described in lemma 2. Thush ∈ L(G).
ConsequentlyL(M) ⊆ L(G). Let G generatesh ∈ L(G) in the way described in lemma
2. Then,M acceptsh in the way described in the above claim, soL(G) ⊆ L(M). As
L(M) ⊆ L(G) andL(G) ⊆ L(M), L(G) = L(M). From the above claim, it follows that
M is a 2-self-reproducing pushdown transducer. Thus, lemma 3 holds.

Lemma 4. Let Q be a left-extended queue grammar satisfying the properties given in
lemma 2. Then, there exists a 2-self-reproducing pushdown transducer,M , such that
Domain(T (M)) = {ε} and Range(T (M)) = L(Q).

Proof. Let G = (V, T, W, F, s, P ) be a left-extended queue grammar satisfying the prop-
erties given in lemma 2.
Construction of M. Introduce the self-reproducing pushdown transducer

M = (Q, V ∪ {S}, ∅, T, R, z, S, O)

whereQ = {z ∪ {〈p, i〉 : p ∈ W, i ∈ {1, 11}} ∪ {〈1, i〉 : i ∈ {1, . . . , 11}}}, O =
{〈1, 3〉, 〈1, 8〉} andR is constructed by performing the following steps 1 through 6.

1. if ysq0 = s, wherey ∈ V − T andq ∈ W − F ,
then addSz → SS〈q0, 1〉Sys to R

2. if (a, q, y, p) ∈ P , wherea ∈ V − T, p, q ∈ W − F , andy ∈ (V − T )∗,
then addS〈q, 1〉 → aS〈p, 1〉y to R

3. add following rules toR

S〈1, 1〉 → 〈1, 2〉S, a〈1, 2〉 → 〈1, 2〉a, S〈1, 2〉 → 〈1, 3〉S, 〈1, 3〉S → S〈1, 4〉,
〈1, 4〉a → a〈1, 4〉, 〈1, 4〉S → 〈1, 5〉S, a〈1, 5〉 → 〈1, 5〉a, S〈1, 5〉 → S〈1, 6〉,
〈1, 6〉a → a〈1, 6〉, 〈1, 6〉S → 〈1, 7〉S, a〈1, 7〉 → 〈1, 7〉a, S〈1, 7〉 → 〈1, 8〉S,
〈1, 8〉S → S〈1, 9〉, 〈1, 9〉a → a〈1, 9〉, 〈1, 9〉S → 〈1, 10〉, a〈1, 10〉a → 〈1, 10〉



4. if (a, q, y, p) ∈ P , wherea ∈ V − T, p = 1, q ∈ W − F , andy ∈ T ∗,
then adda〈1, 10〉S → 〈p, 11〉y

5. if (a, q, y, p) ∈ P , wherea ∈ V − T, p, q ∈ W − F , andy ∈ T ∗,
then adda〈q, 11〉 → 〈p, 11〉y to R

6. if (a, q, y, p) ∈ P , wherea ∈ V − T, q ∈ W − F, y ∈ T ∗, andp ∈ F ,
then addSa〈q, 11〉 → 〈p, 11〉y to R

Proof of the claim.Examine steps 1 through 6 of the construction ofR. Notice that in
every successful computation,M uses the rules introduced in stepi before it uses the
rules introduced in stepi + 1, for i = 1, . . . , 5. Thus, in greater detail, every success-
ful computation can be splitted into three main steps. In these steps the self-reproducing
pushdown transducer simulates the work of queue grammar. In the first step only the rules
of 1 and 2 are used. There are generated two strings. To the output tape is generated the
string of nonterminals and to the pushdown is generated the string of nonterminals that
the queue grammar rewrites until its state isqk+1. In the second step the generated strings
are swapped, reverted and compared using rules of 3. These rules simulates rewriting of
nonterminals in the queue grammar. After this simulation using one rule from 4 the self-
reproducing transducer reaches the last part of simulation. In the last part only rules of 5
(or 6 for the last move) are used. Using these rules the remaining nonterminals are trans-
lated into resulting string of terminalsh, whereh is the string generated by G. Thus, the
claim holds. A detailed proof is left to the reader.

Theorem 1. For every recursively enumerable language, L, there exists a 2-
self-reproducing pushdown transducer,M , such that Domain(T (M)) = L and
Range(T (M)) = {ε} or Domain(T (M)) = {ε} and Range(T (M)) = L.

Proof. This theorem follows from lemmas 1, 2, 3 and 4.
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