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ABSTRACT

String-partitioning systems, discussed in this contribution, are based by grammatical
rules. Each of these rules is a pure context-free rules whose left hand equals to a special
symbol, called @ounder By this bounder, during every derivation or reduction step, this
system divides the current string into several parts. These systems define their languages
by deriving or, in contrast, reducing strings by using these rules. An infinite hierarchy of
language families is obtained.

1 INTRODUCTION

String-partitioning system is absolutely new model in modern language theory based
by context-free rules without nonterminals. Motivation for this type of system comes from
biology where possibility of choosing mode of derivation is needed.

2 PRELIMINARIES

This paper assumes that the reader is familiar with the theory of formal languages
(see [2]).

For a setQ, card(Q) denotes the cardinality @. For an alphabe¥, V* represents
the free monoid generated byunder the operation of concatenation. The identity ofs
denoted by. SetV' =V* — {¢}; algebraicallyV* is thus the free semigroup generated
by V under the operation of concatenation. Moe V*, |w| denotes the length af, and
for W C V, occuriw,W) denotes the number of occurrences of symbols #grim w and
symw, i) denotes théth symbol ofw; for instancesyni{abcd 3) = c.

A context-free grammais a quadrupleG = (V, T,P,S), whereV is a total alphabet,

T CV is an alphabet of terminal§ e (V —T) is the start symbol, anB is a finite set of
rules of the formq: A — v, whereAc (V—T), ve V* andq is a label of this rule. If
g: A—veP, xyeV* Gmakes a derivation step frorf\yto xvyaccording taq: A — v,

symbolically written asxAy = xvy [q: A — V] or, simply, XAy = xvy. In the standard



manner, we define>™, wherem> 0, =", and=-*. For p € P, rhs(p) andlhs(p) denotes
right-side and left-side handle of rufe respectivelylab(p) denotes label of rulg and
for set of rulesP, lab(P) denotes set of all labels of rules frofh The language of G
L(G), is defined as.(G) = {we T* | S=* w}. A languagel., is context-freaf and only
if L=L(G), whereG is a context-free grammar.

A programmed grammafsee page 28 in [1]) is a quadrupe~= (V,T,P,S), where
V is atotal alphabefl CV is an alphabet of terminalS,c (V —T) is the start symbol, and
P is a finite set of rules of the form: A — v,g(q), whereq: A — v is a context free rule
labeled byg andg(q) is a set of rule labels associated with this rule. After an application of
a rule of this form in an ordinary context way, in the next step a rule labeled by a label from
9(qg) has to be applied; otherwis&,makes a derivation step, symbolically denoted=by
by analogy with a context-free grammar. In the standard manner, we deflhavhere
m>0,=", and="*. Thelanguage of GL(G), is defined a&(G) = {we T*| S=* w}.

Let G be a grammar with regulated rewriting, and\Jgt Vi, and S be its nonterminal
alphabet, terminal alphabet, and axiom, respectively. For a derMati®= w; = wp =
-+ =W, =W € V7, according to G, we séhd(D,G) = max{occunw;,W) | 1 <i<r},
and, forw € V¢, we definelnd(w,G) = min{Ind(D,G) | D is a derivation fow in G}.
Theindex of grammafsee page 151 in [1]p is defined as$nd(G) = sup{Ind(w,G) | w €
L(G)}. For alanguage in the family £(X) of languages generated by grammars of some
type X, we definedndx (L) = inf{Ind(G) | L(G) =L, Gis of typeX}. For a family £(X),
we setn(X) ={L | L € L(X) andIndx(L) < n}, n> 1 andL¢in(X) = U Ln(X).

n>1

3 DEFINITIONS

Let | be a set of positive integerdl,2,...,k}. A string-distributing systenis a
quadrupleM = (Q,Z,s,R) whereQ is a finite set of stateg, is an alphabet containing a
special symbol, #, called laounder s € Q is a start state anB C Q x | x {#} x Q x Z*
is a finite relation whose members are caltales A rule (g,n,# p,X) € R, wheren € I,

g, p € Qandx € *, is written asq# — px hereafter.

A k-limited configuratioris any stringk € QX* such thabccur(x,#) < k. Let pu#v,

guxvbe twok-limited configuratioru,v € Z*, occur(u,#) = n— 1 andp# — gx< R. Then,

1. M makes aderivation stepfrom pu#v to quxv by using p# — qx, symbolically
written put#vq= quxv[p# — gx in M and

2. M makes aeduction stefirom quxvto pu#v by usingp# — gx symbolically written
quXxvi = puiv[p# — qx in M.
Let y=* and ;=" denote the transition and reflexive closurgyef and,=-, respec-
tively.
Thelanguage derivedy M, L(M, 4=), is defined as. (M, =) = {w | s#q="qw, g €
Qwe (Z—{#})"}.
Thelanguage reducetty M, L(M, ;=), is defined as. (M, ;=) = {w | qw,="* s#, q €
Example:
M= ({s,p,q, f},{a b,c#}, s R), whereR contains:



1. s — p##
2. pi#t—qath
3. gt — p#c
4. p##— fab
5. f#—fc

L(M, g=) = {a"b"c"|n > 1} = L(M, ;=), holds thaind(M) = 2.

Example of derivation of stringaabbbcccstq=- p##{1] y= qattb# [2] 4= pattbic [3] 4=
qasattbbic 2| y= paattbbticc [3] y= faaabblcc [4] y= faaabbbccds.

Example of reduction of stringaabbbccc faaabbbcceg=- faaabbbfcc [5],= paatbbtcc
[4] /= gqaattbbtic [3],= pattbiic (2], = qattb# [3] = p## (2], = sH[1].

Let Ltin(SPS =), and Ltin (P) denote the families of string-partitioning system de-
rived languages, and programmed languages of finite index based on context-free grammar,
respectively.

4 RESULTS

Lemma 1. £y (P) C L (SPS4=)
For every programmed grammar of index k, G, there is a string-partitioning system of index
K, H, such that |(G) = Lkx(H, 4=).

Proof. Let k > 1 be a positive integer. Léb = (V,T,P,S) is programmed grammar of
indexk, whereN =V —T. We construct the string-partitioning system of indexd =
(Q,TU{#},sR), where #¢ T, s= (0), 0 is a new symbolR andQ are constructed by
performing the following steps:

1. Foreachp: S—a eP,a €V* add(o) #— ([p: S— a])# intoR, where([p: S—
al) is new state irQ.

2. If AfA.. A Ave N, he{l,2....k}, AeN, 1<i<h, geg(p), where

p: Aj — XoB1x1Boxo... Xn—1BnXn, j € {1,2,...,h},q: C— a,Ce N, a € V¥, for

somen>0,x €T 0<t<n,BeN,1<r<nn+h-1<kandD;D;...Dj_1Dj

...Djtn-1Dj4n...Dnyh—1 such thatDiD,...Dj_1Dj1nDjins1...Dnih-1 = AdAo

...Aj_1Aj+1...AhandD;...Djin_1=B1...Bn, Ihs(q) = Dq for somed € {1,2,.. .,

n+h—1},DmeN,1<m<n+h-1

then intoR add

(AdA.. A [p: Aj — XoB1x1Bxxa.. Xn—1BnXn] Ajir.. An) iH#— (D1D>...Dyg

[Q: Dg — a]Dgy1-..Dnin_1)Xo#a#xo. . . Xn—1#%n, Where(D1D3...Dg[q: Dg — a

Dg+1...Dnih_1) IS new state irQ.

O
Basic Idea:

Consider bounder as a special nonterminal, only one in total alphabet. Because of
finite index, more information about bounder can be recorded in finite number of states.
So, we decode into state signature sequence of all origin nonterminals as was in sentential
form in programmed grammar.



Lemma 2. L (SPSy¢=") C Lk(P)
For every string-partitioning system of index k, H, exists equivalent programmed grammar
of index k, G, such thatd(G) = Lx(H, 4=).

Proof. Let k > 1 be a positive integer. Léd = (Q, T U{#},s R) is string-partitioning
system of indeX, whereX = T U {#}. We construct programmed grammar of index
G=(V,T,P,S),whereN =V —T, and set of nonterminal$ and rules® will be constructed
by following steps:

1. P=0,
2. S=(s,1,1),

3. N={(p,i,h) | peQ 1<i<k 1<h<kju{(d,i,h)[qeQ,1<i<k 1<h<k}
U{(a”,i,h) [qeQ 1<i<k 1<h<k},

4. For every rule: pi#t— qy € R Yy = Yo#y1#y2. .. Ym—1#Ym, Yo,Y1,Y2...Ym € T*, if
m = 0 thenhyax= k elsehmax= k— m+ 1, add following set intd®:

(I) {<pajah> _><q/7j7h+m_1>’
{r'| if j+1=ithenr’: (p,i,h) — (q”,i,h+m—1) elser’: (p,j+1,
h> - <q/71+17h+m_1> }
|1§j<i,i§h§hmax}
U
(“) {<p7|7h> _><qD7|7h+m_1>7
{r'|ifi=hthenr’: (q°,i,h+m—1) —yo(d,i,h+m—1)yi(q,i+1,h+
m—21yo...Yym-12(d,i +m—21h+m—Lyynelser’: (p,i+1,h) —
(d,i+14+m-1Lh+m-1)}
’ighﬁhmax}
U
{r'|if j=hthenr’: (q”,i,h+m—1) — yo(q,i,h+m—21)yi(q,i+1,
h+m—1)ys...ym-1(d,i+m—21,h+m—1Lyynelser’: (p,j+1,h) —
d,j+1+m—-1h+m-1)}
|i<j§h,i§h§hmax}
U
(v) {(a”,i,h+m—1) —yo(d,i,h+m—1)y1(d,i+1,h+m—1)yo...ym 1{d,i +
m—1 h+m— 1)yn,
{r'|r":(d,L,h+m-1) —(q,1,h+m-1)}
| i <h < hmax}
U
(V) {(q/7j7h+m_1> _)<q7J7h+m_1>a
{r|if j<h+m—1thenr’: (¢d,j+1,h+m—-1) —(q,j+1,h+m—-1)
elser’: (p,1,h+m—1) —(§,1,h+m—1+m-1), wherepi# —
a¥o#1 - . Ym-1#m € R, Yo, Y1, .., Ym € T*, if I = L thend’ := G}
|1<j<h4+m—1,i <h<hnaxt O



Rigorous proofs (by induction) of both lemmas are left to reader due to insufficient space
here.
Basic Idea:

Each new nonterminal has three components:
(1) origin state from systemd (marked accordingly to phase of simulationGi,
(2) index of nonterminal in actual sentential form (index is important part of rulegn
(3) summary number of nonterminals in actual sentential form (in some substeps inconsis-
tent).

Thanks to programming of rules and finite index is the simulation sequence of rule
from H always atomic irG or a string of terminals is derived.

Theorem 1. L (SPS4=) = Lk(P).

Every language is generated by string-partitioning system of index k if and only if this
language is generated even by some programmed grammar of index k.

Proof. This equivalence was proved in the previous Lemma 1 and 2, therefore, this theorem

holds. ]
Theorem 2. Ltin (SPS ¢=) = Lsin(P).
Proof. Theorem 1 holds for every> 1, therefore, this theorem holds too. |

Corollary 1. Infinite hierarchyLy(SPS 4=-) C Lk+1(SPS¢=>) holds for everyk > 1.
Proof. It follows from Theorem 1 and theorem thiat(P) C L1 (P) for everyk > 1 in
Chapter 3 in [1]. |

5 CONCLUSION

String-partitioning systems have predominantly theoretical acquisition today. It can
help to solve some open problems in regulated grammars of finite index. For example: Is
inclusionL ¢j(Random ContextC L¢in(P) proper?

Ideas of future modifications: studying of canonical derivations, parallel versions
without no increase of power, removing constraint of finite index.

More details about this new system and other results can be found in [3] (in czech).
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