
STRING-PARTITIONING SYSTEMS

Ing. Zbyňek KŘIVKA, Doctoral Degree Programme (1)
Dept. of Information Systems, FIT, BUT

E-mail: krivka@fit.vutbr.cz

Supervised by: Dr. Alexander Meduna

ABSTRACT

String-partitioning systems, discussed in this contribution, are based by grammatical
rules. Each of these rules is a pure context-free rules whose left hand equals to a special
symbol, called abounder. By this bounder, during every derivation or reduction step, this
system divides the current string into several parts. These systems define their languages
by deriving or, in contrast, reducing strings by using these rules. An infinite hierarchy of
language families is obtained.

1 INTRODUCTION

String-partitioning system is absolutely new model in modern language theory based
by context-free rules without nonterminals. Motivation for this type of system comes from
biology where possibility of choosing mode of derivation is needed.

2 PRELIMINARIES

This paper assumes that the reader is familiar with the theory of formal languages
(see [2]).

For a set,Q, card(Q) denotes the cardinality ofQ. For an alphabet,V, V∗ represents
the free monoid generated byV under the operation of concatenation. The identity ofV∗ is
denoted byε. SetV+ = V∗−{ε}; algebraically,V+ is thus the free semigroup generated
by V under the operation of concatenation. Forw∈V∗, |w| denotes the length ofw, and
for W ⊆V, occur(w,W) denotes the number of occurrences of symbols fromW in w and
sym(w, i) denotes thei-th symbol ofw; for instance,sym(abcd,3) = c.

A context-free grammaris a quadruple,G = (V,T,P,S), whereV is a total alphabet,
T ⊆V is an alphabet of terminals,S∈ (V−T) is the start symbol, andP is a finite set of
rules of the formq: A→ v, whereA ∈ (V −T), v ∈ V∗ andq is a label of this rule. If
q: A→ v∈ P, x,y∈V∗, G makes a derivation step fromxAyto xvyaccording toq: A→ v,
symbolically written asxAy⇒ xvy [q: A → v] or, simply, xAy⇒ xvy. In the standard



manner, we define⇒m, wherem≥ 0,⇒+, and⇒∗. For p∈ P, rhs(p) andlhs(p) denotes
right-side and left-side handle of rulep, respectively,lab(p) denotes label of rulep and
for set of rulesP, lab(P) denotes set of all labels of rules fromP. The language of G,
L(G), is defined asL(G) = {w∈ T∗ | S⇒∗ w}. A language,L, is context-freeif and only
if L = L(G), whereG is a context-free grammar.

A programmed grammar(see page 28 in [1]) is a quadruple,G = (V,T,P,S), where
V is a total alphabet,T ⊆V is an alphabet of terminals,S∈ (V−T) is the start symbol, and
P is a finite set of rules of the formq: A→ v,g(q), whereq: A→ v is a context free rule
labeled byq andg(q) is a set of rule labels associated with this rule. After an application of
a rule of this form in an ordinary context way, in the next step a rule labeled by a label from
g(q) has to be applied; otherwise,G makes a derivation step, symbolically denoted by⇒,
by analogy with a context-free grammar. In the standard manner, we define⇒m, where
m≥ 0,⇒+, and⇒∗. Thelanguage of G, L(G), is defined asL(G) = {w∈ T∗| S⇒∗ w}.

Let G be a grammar with regulated rewriting, and letVN, VT , and S be its nonterminal
alphabet, terminal alphabet, and axiom, respectively. For a derivationD : S= w1 ⇒ w2 ⇒
··· ⇒ wr = w∈V∗

T , according to G, we setInd(D,G) = max{occur(wi ,VN) | 1≤ i ≤ r},
and, forw ∈ V∗

T , we defineInd(w,G) = min{Ind(D,G) | D is a derivation forw in G}.
The index of grammar(see page 151 in [1])G is defined asInd(G) = sup{Ind(w,G) | w∈
L(G)}. For a languageL in the familyL(X) of languages generated by grammars of some
typeX, we defineIndX(L) = inf {Ind(G) | L(G) = L, G is of typeX}. For a familyL(X),
we setLn(X) = {L | L ∈ L(X) andIndX(L)≤ n}, n≥ 1 andL f in(X) =

S

n≥1
Ln(X).

3 DEFINITIONS

Let I be a set of positive integers{1,2, . . . ,k}. A string-distributing systemis a
quadrupleM = (Q,Σ,s,R) whereQ is a finite set of states,Σ is an alphabet containing a
special symbol, #, called abounder, s∈ Q is a start state andR⊆ Q× I ×{#}×Q×Σ∗
is a finite relation whose members are calledrules. A rule (q,n,#, p,x) ∈ R, wheren∈ I ,
q, p∈Q andx∈ Σ∗, is written asqn#→ px hereafter.

A k-limited configurationis any stringx∈ QΣ∗ such thatoccur(x,#)≤ k. Let pu#v,
quxvbe twok-limited configurationu,v∈ Σ∗, occur(u,#) = n−1 andpn#→ qx∈R. Then,

1. M makes aderivation stepfrom pu#v to quxv by using pn# → qx, symbolically
written pu#vd⇒ quxv[pn#→ qx] in M and

2. M makes areduction stepfromquxvto pu#vby usingpn#→ qx, symbolically written
quxvr⇒ pu#v[pn#→ qx] in M.

Let d⇒∗ and r⇒∗ denote the transition and reflexive closure ofd⇒ and r⇒, respec-
tively.
The language derivedby M, L(M, d⇒), is defined asL(M, d⇒) = {w | s#d⇒∗ qw, q∈
Q,w∈ (Σ−{#})∗}.
The language reducedby M, L(M, r⇒), is defined asL(M, r⇒) = {w | qwr⇒∗ s#, q ∈
Q,w∈ (Σ−{#})∗}.
Example:
M = ({s, p,q, f},{a,b,c,#},s,R), whereRcontains:



1. s1#→ p ##

2. p1#→ q a#b

3. q2#→ p #c

4. p1#→ f ab

5. f 1#→ f c

L(M, d⇒) = {anbncn|n≥ 1}= L(M, r⇒), holds thatInd(M) = 2.
Example of derivation of stringaaabbbccc: s#d⇒ p##[1]d⇒ qa#b# [2]d⇒ pa#b#c [3]d⇒
qaa#bb#c [2]d⇒ paa#bb#cc [3]d⇒ f aaabbb#cc [4]d⇒ f aaabbbccc[5].
Example of reduction of stringaaabbbccc: f aaabbbcccr⇒ f aaabbb#cc [5] r⇒ paa#bb#cc
[4] r⇒ qaa#bb#c [3] r⇒ pa#b#c [2] r⇒ qa#b# [3] r⇒ p## [2] r⇒ s# [1].

Let L f in(SPS, d⇒), andL f in(P) denote the families of string-partitioning system de-
rived languages, and programmed languages of finite index based on context-free grammar,
respectively.

4 RESULTS

Lemma 1. Lk(P)⊆ Lk(SPS, d⇒)
For every programmed grammar of index k, G, there is a string-partitioning system of index
k, H, such that Lk(G) = Lk(H, d⇒).

Proof. Let k ≥ 1 be a positive integer. LetG = (V,T,P,S) is programmed grammar of
index k, whereN = V −T. We construct the string-partitioning system of indexk, H =
(Q,T ∪{#},s,R), where #/∈ T, s= 〈σ〉, σ is a new symbol,R andQ are constructed by
performing the following steps:

1. For eachp: S→ α ∈ P, α ∈V∗, add〈σ〉1#→ 〈[p: S→ α]〉# intoR, where〈[p: S→
α]〉 is new state inQ.

2. If A1A2 . . .A j . . .Ah ∈ N∗, h ∈ {1,2, . . . ,k}, Ai ∈ N, 1 ≤ i ≤ h, q ∈ g(p), where
p: A j → x0B1x1B2x2 . . .xn−1Bnxn, j ∈ {1,2, . . . ,h}, q: C → α, C ∈ N, α ∈ V∗, for
somen≥ 0, xt ∈ T∗, 0≤ t ≤ n, Br ∈N, 1≤ r ≤ n, n+h−1≤ k andD1D2 . . .D j−1D j

. . .D j+n−1D j+n . . .Dn+h−1 such thatD1D2 . . .D j−1D j+nD j+n+1 . . .Dn+h−1 = A1A2

. . .A j−1A j+1 . . .Ah andD j . . .D j+n−1 = B1 . . .Bn, lhs(q) = Dd for somed∈ {1,2, . . . ,
n+h−1}, Dm∈ N, 1≤m≤ n+h−1
then intoRadd
〈A1A2 . . .A j−1 [p: A j → x0B1x1B2x2 . . .xn−1Bnxn] A j+1 . . .Ah〉 j# → 〈D1D2 . . .Dd

[q: Dd → α]Dd+1 . . .Dn+h−1〉x0#x1#x2 . . .xn−1#xn, where〈D1D2 . . .Dd[q: Dd → α]
Dd+1 . . .Dn+h−1〉 is new state inQ.

ut
Basic Idea:

Consider bounder as a special nonterminal, only one in total alphabet. Because of
finite index, more information about bounder can be recorded in finite number of states.
So, we decode into state signature sequence of all origin nonterminals as was in sentential
form in programmed grammar.



Lemma 2. Lk(SPS, d⇒)⊆ Lk(P)
For every string-partitioning system of index k, H, exists equivalent programmed grammar
of index k, G, such that Lk(G) = Lk(H, d⇒).

Proof. Let k ≥ 1 be a positive integer. LetH = (Q,T ∪ {#},s,R) is string-partitioning
system of indexk, whereΣ = T ∪{#}. We construct programmed grammar of indexk,
G= (V,T,P,S), whereN =V−T, and set of nonterminalsN and rulesPwill be constructed
by following steps:

1. P = /0,

2. S= 〈s,1,1〉,

3. N = {〈p, i,h〉 | p∈Q, 1≤ i ≤ k, 1≤ h≤ k} ∪ {〈q′, i,h〉 | q∈Q, 1≤ i ≤ k, 1≤ h≤ k}
∪ {〈q∇, i,h〉 | q∈Q, 1≤ i ≤ k, 1≤ h≤ k},

4. For every ruler : p i#→ qy∈ R, y = y0#y1#y2 . . .ym−1#ym, y0,y1,y2 . . .ym ∈ T∗, if
m= 0 thenhmax= k elsehmax= k−m+1, add following set intoP:

(i) {〈p, j,h〉 → 〈q′, j,h+m−1〉,
{r ′ | if j +1 = i thenr ′ : 〈p, i,h〉 → 〈q∇, i,h+m−1〉 elser ′ : 〈p, j +1,

h〉 → 〈q′, j +1,h+m−1〉 }
| 1≤ j < i, i ≤ h≤ hmax}

∪
(ii) {〈p, i,h〉 → 〈q∇, i,h+m−1〉,

{r ′ | if i = h thenr ′ : 〈q∇, i,h+m−1〉 → y0〈q′, i,h+m−1〉y1〈q′, i+1,h+
m−1〉y2 . . .ym−1〈q′, i +m−1,h+m−1〉ym elser ′ : 〈p, i +1,h〉 →
〈q′, i +1+m−1,h+m−1〉}

| i ≤ h≤ hmax}
∪

(iii) {〈p, j,h〉 → 〈q′, j +m−1,h+m−1〉,
{r ′ | if j = h thenr ′ : 〈q∇, i,h+m−1〉 → y0〈q′, i,h+m−1〉y1〈q′, i +1,

h+m−1〉y2 . . .ym−1〈q′, i+m−1,h+m−1〉ym elser ′ : 〈p, j +1,h〉→
〈q′, j +1+m−1,h+m−1〉}

| i < j ≤ h, i ≤ h≤ hmax}
∪

(iv) {〈q∇, i,h+m−1〉 → y0〈q′, i,h+m−1〉y1〈q′, i +1,h+m−1〉y2 . . .ym−1〈q′, i +
m−1,h+m−1〉ym,

{r ′ | r ′ : 〈q′,1,h+m−1〉 → 〈q,1,h+m−1〉}
| i ≤ h≤ hmax}

∪
(v) {〈q′, j,h+m−1〉 → 〈q, j,h+m−1〉,

{r ′ | if j < h+m−1 thenr ′ : 〈q′, j +1,h+m−1〉 → 〈q, j +1,h+m−1〉
elser ′ : 〈p̃,1,h+m−1〉 → 〈q̃′,1,h+m−1+ m̃−1〉, wherep̃ ĩ#→
q̃ỹ0#ỹ1 . . . ỹm̃−1#ỹm̃∈ R, ỹ0, ỹ1, . . . , ỹm̃∈ T∗, if ĩ = 1 thenq̃′ := q̃∇}

| 1≤ j ≤ h+m−1, i ≤ h≤ hmax}. ut



Rigorous proofs (by induction) of both lemmas are left to reader due to insufficient space
here.
Basic Idea:

Each new nonterminal has three components:
(1) origin state from systemH (marked accordingly to phase of simulation inG),
(2) index of nonterminal in actual sentential form (index is important part of rules inH),
(3) summary number of nonterminals in actual sentential form (in some substeps inconsis-
tent).

Thanks to programming of rules and finite index is the simulation sequence of rule
from H always atomic inG or a string of terminals is derived.

Theorem 1.Lk(SPS, d⇒) = Lk(P).
Every language is generated by string-partitioning system of index k if and only if this
language is generated even by some programmed grammar of index k.
Proof. This equivalence was proved in the previous Lemma 1 and 2, therefore, this theorem
holds.

Theorem 2.L f in(SPS, d⇒) = L f in(P).
Proof. Theorem 1 holds for everyk≥ 1, therefore, this theorem holds too.

Corollary 1. Infinite hierarchyLk(SPS, d⇒)⊂ Lk+1(SPS, d⇒) holds for everyk≥ 1.
Proof. It follows from Theorem 1 and theorem thatLk(P) ⊂ Lk+1(P) for everyk≥ 1 in
Chapter 3 in [1].

5 CONCLUSION

String-partitioning systems have predominantly theoretical acquisition today. It can
help to solve some open problems in regulated grammars of finite index. For example: Is
inclusionL f in(Random Context)⊆ L f in(P) proper?

Ideas of future modifications: studying of canonical derivations, parallel versions
without no increase of power, removing constraint of finite index.

More details about this new system and other results can be found in [3] (in czech).

REFERENCES

[1] Dassow, J., P̆aun, G.: Regulated Rewriting in Formal Language Theory, Springer, New
York, 1989.

[2] Meduna, A.: Automata and Languages: Theory and Applications, Springer, London,
2000.

[3] K řivka, Z.: String-partitioning systems – essay in course Modern Theoretical Com-
puter Science [in czech], FIT Brno University of Technology, 2004.


