
GENETIC PROGRAMMING AND PERL PROGRAMMING
LANGUAGE

Ing. Michal JUROSZ, Doctoral Degree Programme (1)
Dept. of Control and Instrumentation, FEEC, BUT

E-mail: xjuros00@stud.feec.vutbr.cz

Supervised by: Dr. Zdeněk Malec

ABSTRACT
This paper introduces a tree–based genetic programming with Perl programming

language approach. Various selection methods, initialization procedures and genetic operators
(crossover, mutation, permutation and editation) was implemented. Some test results
(artificial ant problem) will be also presented.

1 INTRODUCTION

Genetic programming (GP) is simple and powerful machine learning technique
inspirired by biological evolution that use stochastic evolutionar algorithms to on the fly
discovering optimal or near-optimal topology of structures and values for all elements of
structures.

Structures are mostly variable-length executable computer programs and fitness (score,
quality of individual) is determined by ability to perform an user-defined computational task.
Functions act as the branch points in the computer program tree, linking other functions or
terminals. Terminals act as end (leaf) nodes. A terminal might be a variable, a constant or a
function with no arguments.

According to J. Koza [1], the first experiments with GP were reported by Stephen F.
Smith (1980) and Nichael L. Cramer (1985). Thanks to various improvements in GP
technology and to exponencial grown in computer power, GP has started produce human-
competive results, e.g. [2], [3], [4], and useful solutions to problems in domains where there
are no known algorithms (an automated invention machine). The genetic programming
algorithm has a high computational cost to run and has difficulty scaling to larger and harder
problem instances. However, if the problem is hard, genetic programming can be effectively
distributed. Each individual or sub-population (deme) can be evaluated on a separate
processor.

Different GP approach, such as linear genetic programming (LGP), performs GP
through direct manipulation of bytecode or binary machine code. This make GP sixty times
faster than classic GP implemented in declarative programming languages (Lisp, Prolog) [4].

http://www-2.cs.cmu.edu/%7Esfs/
http://www-2.cs.cmu.edu/%7Esfs/
http://www.sover.net/%7Enichael/

2 PERL PROGRAMMING LANGUAGE

Perl is open source programming language. Perl has been ported to over a hundred
different platforms and is widely used in web development, finance and bioinformatics, and
indeed in most sectors where a premium is placed on rapid development and the availability
of a large number of standard and 3rd-party modules. Although Perl has most of the ease-of-
use features of an interpreted language, it does not strictly interpret and execute source code
one line at a time. Rather, Perl (the program) first compiles an entire program into an internal
form (a parse tree) which is then optimized before being run (source wikipedia.org).

Perl has a run-time evaluation, dynamic data types (e.g. arrays and hashes with garbage
collector) and a large collection of Perl modules and documentation (accesible through
cpan.org) which make it easy to implement tree-based GP.

2.1 PERL MODULES FOR TREE-BASED GENETIC PROGRAMMING
Algorithm::Evolutionary [5], a set of classes for doing object-oriented evolutionary

computation in Perl, was extended for tree-based genetic programming. New sub-packages
e.g. Individual::ProgTree, Op::ProgTreeCreator, Op::ProgTreeReproduction,
Op::ProgTreeCrossover and Op::ProgTreeMutation (contains methods for base mutation, full
mutation, permutation and editation) was implemented.

3 EXAMPLE: ARTIFICIAL ANT

Symbolic regresion, artificial ant and parity
problem are basic examples and test problems used
in GP. Artificial ant problem (“Santa Fe” Trail)
contains numerous solutions with a lot of symetry
and is deceptive for genetic programming.

Set of functions is { if-food-ahead-then-else,
block2, block3 } and set of terminals is
{ move_forward, turn_right, turn_left,
do_nothing }. The goal of problem is to find best
program, consisting of mentioned functions and
terminals, to control ant behavior to find all
89 pieces of food along an trail. Trail on a two-
dimensional grid is irregular (see Fig. 1). The
terminals are used for move. The ant can sense if
there is food on the square directly in front of the
ant and function “if-food-ahead-then-else” is
condition controlled by this ant sense. Fitness is
defined as a number of food picked up till the end
of search. Maximal number of move operations is 400.

Fig. 1: Map for artificial ant

http://en.wikipedia.org/wiki/Web_development
http://en.wikipedia.org/wiki/Finance
http://en.wikipedia.org/wiki/Bioinformatics

Fig. 2: Statistics results for 3 different
variable setups

3.1 ARTIFICIAL ANT IMPLEMENTATION AND RESULTS
Genetic Programming generally, and

GP with Perl Algorithm::Evolutionary is
not exception, has a lot of parameters (for
structure representation, initialization,
fitness function, stop condition, selection
method, genetic operations, and so on).

For experiment has been used this
configuration (see [1] for detail
explanation):

• maximum tree depth: 5

• initialization type: half-and-half

• fitness function: number of eaten
pieces of food minus 10-4 . (number
of steps + number of turns)

• max sum of turns and steps: 400

• selection mechanism for crossover:
two times random, one times
proportional to fitness

• probability of mutation after
crossover: 0.01

• operator rates: reproduction = 2,
crossover = 7, mutation = 6,
permutation = 4, full_mutation = 1,
crossover node selection rate: (1,9,1)

The experiment has been carried out
with more than 30 separate runs on 3
different variable setups. First variable
setup with small population size (50
individuals) has had the worst results. The
worst run, from all 34 runs with 1800
generations in each, evolve artificial ant
which can eat only 62 pieces of food (from
89 obtainable pieces). Second variable
setup has fifth times greater population size. All 41 runs, each with 600 generations duration,
has found out nearly the best solution. Computation with this configuration also founded the
best ant code for used fitness function. Best ant picked up all 89 pieces of food and sum of
used steps and turns to do that was 307 (see fig. 3). Runs with population size 1250 and
maxima number of generations equal 200 has no significant better results.

4 CONSLUSION

Perl is dynamic programming language with
runtime code evaluation, which has been useful for
implementing flexible object oriented tree based
genetic programming.

Experimental results suggest that fitness
function, adequate population size and multiple runs
are key to success. Genetic programming also need
high-level rate for mutation operators, compared to
genetic algorithms.

Editation is usefull non Darwinian operator,
which speed computation and reduce program tree
sizes.

Fig. 3: The best solution

REFERENCES
[1] Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection, MIT press, 1992

[2] Koza, J., Bennet, F., Andre, D., Keane, M.: Genetic Programming III, Morgan Kaufman,
San Francisco, CA., 1999

[3] Koza, J., Keane, M., Yu, J., Bennet, F., Mydlowec, W.: Automatic Creation of Human-
Competitive Programs and Controllers by Means of Genetic Programming, Genetic
Programming and Evolvable Machines, Volume 1, Kluwer Academic Publishers, 2000

[4] Deschaine, L., Francone, F.: Comparison of Discipulus™ Linear Genetic Programming
Software with Support Vector Machines, Classification Trees, Neural Networks and
Human Experts, RML Technologies, Inc., www.aimlearning.com

[5] Algorithm::Evolutionary (Perl module), http://search.cpan.org/~jmerelo/Algorithm-
Evolutionary/, 2005

http://www.aimlearning.com/
http://search.cpan.org/~jmerelo/Algorithm-Evolutionary/
http://search.cpan.org/~jmerelo/Algorithm-Evolutionary/

	INTRODUCTION
	PERL PROGRAMMING LANGUAGE
	PERL MODULES FOR TREE-BASED GENETIC PROGRAMMING

	EXAMPLE: ARTIFICIAL ANT
	ARTIFICIAL ANT IMPLEMENTATION AND RESULTS

	CONSLUSION

