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ABSTRACT

Our experiments are oriented in detection the T-wave alternans of rabbit electrogram
with synthetically evoked the cardiac diseases. In each system for ECG processing usually
implemented block of R-peak detection. Most of them are based on filtering. The T-wave
suppression and the R-wave amplification is results of the filtration. This paper will deal
about the differences between spectral properties of QRS complexes and T-wave of rabbit
electrogram.

1 PARAMETRIC POWER SPECTRUM ESTIMATION METHOD

For spectral analysis of non-stationary signals were used parametric method. It gives
a better results in frequency and time resolution than classical nonparametric spectrum
estimation method. Nonparametric method can be simple computed via DFT. However,
these methods require the availability of long data records to achieve the sufficient fre-
quency resolution. On the other hand short time segments we need to analyze. Parametric
methods for power spectrum estimation is useful method for analyzing short non-periodic
sequences.

The parametric methods are based on modelling the data sequencex(n) as the output
of a linear system characterized by a rational system function form [1]
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The corresponding difference equation is
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wherew(n) is the input sequence andx(n) presents the output data. Ifw(n) is characterized
as a stationary random process than the output sequence is also assumed as a random
process. In such a case the power density spectrum is

Γxx( f ) = |H( f )|2Γww( f ), (3)

whereΓww( f ) is the power density spectrum of input sequence and|H( f )| is the frequency
response of the model (1). In case of input sequence is zero-mean white noise with auto-
correlationγww(m) = σ2

wδ(m), the equation of power density spectrum (3) is simply

Γxx( f ) = σ2
w|H( f )|2 = σ2

w
|B( f )|2

|A( f )|2
, (4)

whereσ2
w is the variance (e.g.,σ2

w = ∑{|w(n)|2}). The spectrum estimation consist of two
steps. For first, it has to be estimated parametersak andbk of the model for given datax(n).
Then we can compute the power density spectrum according to (4).

The model described in (1) is called an autoregressive-moving average (ARMA)
process of order(p,q). If we set theq = 0 andb0 = 1 we get simplified functionH(z) =
1/A(z) called autoregressive (AR) models of orderp.

For these experiments were used AR model and Burg method for AR model parame-
ters determination. The Burg method use a forward and backward linear prediction, based
on a lattice structure of FIR filter.

2 FORWARD AND BACKWARD LINEAR PREDICTION

The linear prediction has many practical applications. The Burg method uses forward
and backward linear prediction for AR model parameters determination. By other words,
the linear prediction is predicting the value of a stationary random process in forward and
backward time. This leads to lattice structure FIR filter, see fig. (1). The parameterK is
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Figure 1: Two-stage lattice filter

called reflection coefficient. Form-stage lattice filter can be written recursive equation:

f0(n) = g0(n) = x(n)
fm(n) = fm−1(n)+Kmgm−1(n−1), m= 1,2, . . . , p
gm(n) = K∗

m fm−1(n)+gm−1(n−1), m= 1,2, . . . , p.
(5)

Function fm(n) is the forward and thegm(n) is backward prediction error inm-stage lattice
structure.



Forward linear prediction is process to get estimation value ˆx(n) of future valuex(n)
with knowledge of previousp valuesx(n−1), x(n−2), . . . , x(n−p). This can be presented
as linear combination (6) and the prediction errorfp(n) as the difference between the real
valuex(n) and estimation of ˆx(n) as (7):

x̂(n) = −
p

∑
k=1

ap(k)x(n−k), (6)

fp(n) = x(n)− x̂(n) = x(n)+
p

∑
k=1

ap(k)x(n−k), (7)

whereap(k) are weights in the linear combination. It can be seen that the equation (7) is
similar to FIR linear filter with input sequencex(n), output sequencefp(n) and parameters
of the filterap(0), . . . , ap(p), (the parameterap(0) = 1). This filter is called a prediction
error filter. Transmission function of this filter is:

Ap(z) =
Fp(z)
X(z)

=
p

∑
k=0

ap(k) ·z−k. (8)

Backward linear prediction is reversely defined problem. We have data from stationary
random processx(n), x(n−1), . . . , x(n− p+1) and we have to predict the valuex(n− p).
The backward linear prediction equation of orderp and the backward linear errorgp(n)
may be determined similarly as in previous paragraph:
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gp(n) = x(n− p)− x̂(n− p) = x(n− p)+
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∑
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bp(k)x(n−k), (10)

wherebp(k) is weighting coefficients of backward linear prediction. This prediction may
be realized similarly by FIR filter as a lattice structure. If we compare equations (7)
and (10), we deduce that weightsbp(k) are in reverse numerical order and complex conju-
gates ofap(k) is necessary for complex valued data:

bp(k) = a∗p(p−k), k = 0,1, . . . , p. (11)

Transmission function of the backward linear system and from (11) we get an equation:
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−1). (12)

Transformation the equation (5) intoz domain and substituting (8) and (12) may be
derived following equation [1]:[
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The Burg method is worked on minimizing the forward and backward prediction error.
It uses the lattice structure of FIR filter and compute the reflection coefficientsKm, m=
1,2, . . . , p. From it we can compute theap(k) weighting parameters.



3 BURG METHOD FOR AR MODEL PARAMETERS DETERMINATION

The method devised by Burg, it is based on minimization of the forward and back-
ward errors in linear predictors. The reflection coefficients may be obtained by the follow-
ing equation:
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Theam(k) parameters may be compute by Levinson-Durbin recursion derived from (13):

am(k) = am−1(k)+Kma∗m−1(m−k), k = 1, . . . ,m−1, m= 1, . . . , p. (15)

Finally the power spectral density may be computed as a fraction:

PBU
xx ( f ) =
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, (16)

where prediction error may be expressed recursively asEm = (1−|Km|2)Em−1. The value
E0 is the variance of the input signal.

4 IMPLEMENTATION

The Burg method were used for spectral analysis of two types of ECG signals. First
were obtained from CSE bank of common standards in ECG signals and the second, rab-
bit electrogram, were obtained from the experiments on isolated heard by electro-optical
way [2], sampling frequency of bow signals werefs = 500Hz. This paper has been writ-
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Figure 2: Power spectral density. AR parametersp = 4, N = 30.

ten with connection to T-wave alternans (TWA) and QRS detector. All known studies of
TWA and QRS detectors uses spectral properties of human ECG. Filtering by band-pass
filter13 to 24Hz can be marked off the QRS complex. However, the rabbit electrogram has
another spectral density, which hinder correct detection.



On fig. 2 is shown evolution of power spectral density. In case of rabbit electrogram
is more difficult to isolate the QRS complex by FIR filtering, because the power spectral
density of R wave and T wave is similar especially in higher frequency, as can be seen
on fig. 3. This figure give evidence about power spectral density of R and T wave of
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Figure 3: Power spectral density of R-wave (left) and T-wave (right),p = 4.

rabbit electrogram. For first it fulfil a premise that T-wave is low frequency instead of
high frequency R-wave. With increasing frequency the power spectral density is slightly
falling. From frequency approximatelyf = 100to 250Hz is probability of appearance each
frequency component of T-wave about 10 times lower than R-wave, however the energy of
R-wave in this frequency range is too low, in most of cases under press of noise, and the
detection is also difficult.

5 CONCLUSION

The power spectral density of the rabbit electrogram give information about appear-
ance of each frequency components. The filtering by high-pass or any other type of filter
for detection of R-peak in electrogram isn’t sufficient. The reason of this is the problem
described in previous paragraph. For the best detection is better to use a decomposition by
the filters bank, e.g. wavelet transform. The detection may start on the lowest frequency
band, where the energy on R and T waves is the biggest. In higher bands the energy falling
down, but energy of T-wave is dropping more quickly. The algorithm for R-peak detection
is a theme of future research.
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