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ABSTRACT

The scattered context generators derive their sentences followed by the correspond-
ing parses. This paper discusses their canonical version, which makes this derivation in
a leftmost way. It demonstrates that for every recursively enumerable language, L, there
exists a canonical scattered context generator whose language consists of L’s sentences fol-
lowed by their parses. In fact, this result is established based on the generators containing
no more than six nonterminals.

1 INTRODUCTION

Very recently, the scattered context grammars without erasing productions have been
used to generate their sentences together with the corresponding parses in [1]. Recall that
it was demonstrated that for every recursively enumerable language, L, there exists a scat-
tered context grammar whose language consists of L’s sentences followed by their parses.
In this paper, we define the proper leftmost generator of its sentences with their parses
which makes its generation by making only the leftmost derivation, and we demonstrate
the characterization of recursively enumerable languages by analogy with the characteri-
zation described above. Moreover, this grammar contains at most six nonterminals.

2 PRELIMINARIES

We assume that the reader is familiar with the language theory (see [2]). V ∗ rep-
resents the free monoid generated by V under the operation of concatenation. The unit
of V ∗ is denoted by ε. Set V + = V ∗−{ε}. For w ∈ V ∗, |w| and al ph(w) denote the
length of w and the set of symbols occurring in w, respectively. For L ⊆ V ∗, al ph(L) =
{a |a ∈ al ph(w),w ∈ L}.

A queue grammar is a sixtuple, Q = (V,T,W,F,s,P), where V and W are alphabets
satisfying s∈VW , T ⊆V , F ⊆W , s∈ (V −T )(W −F), and P⊆ (V ×(W −F))×(V ∗×W )



is a finite relation whose elements are called productions. For every a ∈ V , there exists a
production (a,b,x,c) ∈ P. If u,v ∈ V ∗W such that u = arb, v = rxc, a ∈ V , r,x ∈ V ∗,
b,c ∈W , and (a,b,x,c) ∈ P, then u⇒ v [(a,b,x,c)] in G or, simply, u⇒ v. In the standard
manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗. The
language of Q, L(Q), is defined as L(Q) = {w ∈ T ∗ |s ⇒∗ w f where f ∈ F}. It is proved
that for every queue grammar, Q′, there exists an equivalent queue grammar, Q, L(Q′) =
L(Q), such that its generation can be divided into two parts: first, it generates only words
over (V −T ), and, after it passes through a special state, it generates only words over T .

3 DEFINITIONS

A scattered context grammar, a SCG for short, is a quadruple, G = (V,P,S,T ), where
V is an alphabet, T ⊆ V , S ∈ V − T , and P is a finite set of productions such that each
production has the form (A1, . . . ,An) → (x1, . . . ,xn), for some n ≥ 1, where Ai ∈ V − T ,
xi ∈ V ∗, for 1 ≤ i ≤ n. If every production (A1, . . . ,An) → (x1, . . . ,xn) ∈ P satisfies xi ∈
V + for all 1 ≤ i ≤ n, G is a propagating scattered context grammar, a PSCG for short.
If (A1, . . . ,An) → (x1, . . . ,xn) ∈ P, u = u1A1u2 . . .unAnun+1, and v = u1x1u2 . . .unxnun+1,
where ui ∈ V ∗, 1 ≤ i ≤ n, then G makes a derivation step from u to v according to
(A1, . . . ,An) → (x1, . . . ,xn), symbolically written as u ⇒ v [(A1, . . . ,An) → (x1, . . . ,xn)] in
G or, simply, u ⇒ v; in addition, if Ai /∈ al ph(ui) for all 1 ≤ i ≤ n, then this step is left-
most. The language of G is denoted by L(G) and defined as L(G) = {x |x ∈ T ∗,S ⇒∗ x}.
If S ⇒∗ x with x ∈ T ∗, S ⇒∗ x is a successful generation of x in G. If every step in every
successful generation in G is leftmost, G generates L(G) in a leftmost way.

In this paper, we automatically assume that for every grammar, G, there is a set of
production labels, lab(G), such that its cardinality is equal to the number of G’s produc-
tions and no member of lab(G) occurs in any of G’s components. Furthermore, there is
a bijection from the set of G’s productions to lab(G) such that if this bijection maps a
production (A1, . . . ,An) → (x1, . . . ,xn) to a label l ∈ lab(G), we say that (A1, . . . ,An) →
(x1, . . . ,xn) is labeled by l, symbolically written as l : (A1, . . . ,An)→ (x1, . . . ,xn). By anal-
ogy with labeling each production in every SCG , we label each production, (a,b,x,c), in
every queue grammar as l : (a,b,x,c). To express that G makes x ⇒∗ y by using a se-
quence of productions labeled with p1, p2, . . . , pn, we write x ⇒∗ y [ρ], where x,y ∈ V ∗,
ρ = p1 . . . pn ∈ lab(G)∗. Let S ⇒∗ x [ρ] in G, where x ∈ T ∗ and ρ ∈ lab(G)∗; then,
x is a sentence generated by G according to parse ρ. Let G = (V,P,S,T ) be a SCG
with lab(G) ⊆ T . G is a proper generator of its sentences with their parses if L(G) =
{x |x = yρ,y ∈ (T − lab(G))∗,ρ ∈ lab(G)∗,S ⇒∗ x [ρ]}; in addition, if G generates L(G)
in a leftmost way, G is a proper leftmost generator of its sentences with their parses.

4 RESULTS

To define the main theorem formally, we introduce the weak identity π from (V ∪
lab(G))∗ to V ∗ defined as π(a) = a for every a ∈V and π(p) = ε for every p ∈ lab(G).

Theorem 1. For every recursively enumerable language, L, there exists a PSCG, G, such
that G contains no more than six nonterminals, G is a proper leftmost generator of its



sentences with their parses and L = π(L(G)).

Proof. Let Q = (V,T,W,F,s,R) be a queue grammar such that L = L(Q). Define an in-
jection, α, from lab(Q) to {0̄}∗{1̄} so that α is an injective homomorphism when its do-
main is extended to lab(Q)∗ in the standard way. Similarly, define an injection, β, from
T to {0}∗{1}, so that β is an injective homomorphism when its domain is extended to
T ∗. Further, define the binary relation, f , over V so that f (ε) = ε and f (a) = {α(r) |r :
(a,b,c1 . . .cn,d) ∈ R} for all a ∈V . Similarly, define the binary relation, g, over W so that
g(b) = {α(r) |r : (a,b,c1 . . .cn,d)∈R} for all b∈W . In the standard manner, extend the do-
main of f and g to V ∗ and W ∗, respectively. Define the PSCG as G = ({S,A,B,#, 0̄, 1̄},P,S,
{0,1}∪ lab(G)), where P and lab(G) are constructed as follows:

1. For every ā0 ∈ f (a0), q̄0 ∈ g(q0) such that s = a0q0, add
b1ā0q̄0c : (S)→ (Ab1ā0q̄0cAAq̄0Aā0AB) to P;

2. For every r : (a,b,c1 . . .cn,d) ∈ R, c1, . . . ,cn ∈ (V − T ) for some n ≥ 0 and d ∈
(W −F), c̄1 ∈ f (c1) . . . c̄n ∈ f (cn), d̄ ∈ g(d), add
b2rc̄1 . . . c̄nd̄c : (A,A,A,A,A,B)→ (A,b2rc̄1 . . . c̄nd̄cA,α(r)A, d̄A, c̄1 . . . c̄nA,B) to P;

3. Add b3c : (A,A,A,A,A,B)→ (A,b3cA,A,A,B,A) to P;

4. For every r : (a,b,c1 . . .cn,d) ∈ R, c1, . . . ,cn ∈ T for some n ≥ 0 and d ∈ (W −F),
d̄ ∈ g(d), add
b4rd̄c : (A,A,A,A,B,A)→ (β(c1) . . .β(cn)A,b4rd̄cA,α(r)A, d̄A,B,A) to P;

5. For every r : (a,b,c1 . . .cn,d) ∈ R, c1, . . . ,cn ∈ T for some n ≥ 0 and d ∈ F , add
b5rc : (A,A,A,A,B,A)→ (β(c1) . . .β(cn),b5rcA,α(r)A,A,B,AA) to P;

6. Add
b6c : (A, 0̄,A, 0̄,A, 0̄,B,A,A)→ (b6c,A,#,A,#,A,B,A,A), and
b7c : (A, 1̄,A, 1̄,A, 1̄,B,A,A)→ (b7c,A,#,A,#,A,B,A,A) to P;

7. Add
b8c : (A,A,A,B,A,A)→ (b8cB,#,#,#,#,#),
b9c : (B,#)→ (b9c,B), and
b10c : (B)→ (b10c) to P.

Every sentence w ∈ L(G) is generated in G in this way: S ⇒ x1 [b1ā0q̄0c] ⇒∗ x2 [ρ] ⇒
y [b3c] ⇒∗ z [σ] ⇒ u [b5rc] ⇒∗ v [τ] ⇒ w1 [b8c] ⇒∗ w2 [ω] ⇒ w [b10c] where ρ, σ and
τ, ω are sequences consisting of labels of the productions introduced in steps 2, 4 of the
construction, and {b6c,b7c}, {b9c}, respectively.
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