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ABSTRACT

A linear n-parallel automata represent a simple formal model of parallel abstract
machines computing. These automata accept instances of languages with respect to the
analogy of restricted parallelism in the linear n-parallel grammars. Under their generative
power they constitute an infinite hierarchy of languages which exceeds from bounds of the
context free languages.

1 INTRODUCTION

The first mention about the restricted parallelism in grammars is dated to early 1970s.
R. D. Rosebrugh and D. Wood‘s article [1] summarizes the basic aspects of the parallel
computing, necessary steps by the modification of the current system which is represented
by the classical sequential grammars. They have designed a model of the n-parallel linear
grammars (n-PLG) which comes out of the simple principle – an application of the n-
rewriting grammar rules to the n-available non-terminals at the same time.

The partial language linearity is the only condition which ensures uniqueness by the
application of the rewriting rules. That article takes in studies about properties of the n-
parallel linear languages (n-PLL) – their closure or structural properties and generative
power of the n-PLLs family. It was proved that family n-PLLs constitute an infinite hierar-
chy of languages bounded by family of context sensitive languages.

In this paper, we complete current n-PLL study with new formal models of the regular
and linear n-parallel automaton. We prove, for every n-PLG, it is possible to construct a
linear n-parallel automaton, and also, for every linear n-parallel automaton, there exists a
n-PLG. We show the class of the linear n-parallel automata accepts n-PLLs family.

Models of n-parallel automata can be used in these situations where we need to verify
some context dependent sequences of data. The only limitation consists in nondeterministic
specification of the start positions for n-reading headers. However, this could be resolved
by using key words or other auxiliary programming techniques.



2 PRELIMINARIES

A n-parallel right linear grammar(n-PRLG) is a quintupleGS= (N,T,P,S,n), where
N is a set of nonterminals,T is a set of terminal symbols,S∈N is the start symbol and P is
a set of rewriting rules of the form:S→ x, for x∈ T∗, or S→ X1 . . .Xn, for Xi ∈ (N\{S})
where 1≤ i ≤ n, X → y, for y ∈ T∗(N \ {S}) andX ∈ N \ {S}, andX → x, for x ∈ T+,
X ∈ N. Numbern∈ Z, n > 0, is used in the meaning of the strange of parallelism.

For x,y∈ (N∪T)∗ the relation of derivationx⇒ y is defined with these conditions:
x= SandS→ y∈P, orx= x1X1 . . .xnXn, y= x1y1 . . .xnyn, for xi ∈T∗, 1≤ i≤n, Xi → yi ∈P
and yi → T∗(N \ {S}), 1≤ i ≤ n, or x = x1X1 . . .xnXn, y = x1y1 . . .xnyn, xi ∈ (N∪ T)∗,
1≤ i ≤ n, or Xi → yi ∈ P andyi → T∗, 1≤ i ≤ n.

For every n-PRLGGS=(N,T,P,S,n) there exists aGS=(N,T,P,S,n) so thatL(G)=
L(G), whereN = {S}∪N1∪ . . .∪Nn, S /∈ T ∪N1∪ . . .∪Nn andNi are mutually pair wise
disjunctive. IfS→ X1 . . .Xn ∈ P thenXi ∈Ni where 1≤ i ≤ n. If Xi → yYj ∈ P andXi ∈Ni ,
Yj ∈ Nj , theni = j. GrammarG is known as a grammar ina normal formand we should
write G = (N1, . . . ,Nn,T,S,P,n).

3 DEFINITIONS

A nondeterministic regular n-parallel automaton(n-RA) is an one way initial au-
tomaton with n-headers for reading, specified as a quintupleM = (Q,T,δ,δP,F,n), where
Q = (Q1, . . . ,Qn) is an n-tuple of finite sets of internal states,T is a finite set of input
symbols,δ is a transition function in the formQi × (T ∪{λ}) → 2Qi for ∀i ∈ {1, . . . ,n},
δP = {x|x∈ (Q1× . . .×Qn)} is a set of initial n-tuples of states for parallel computation
andF = (F1, . . . ,Fn) is an n-tuple of end states sets, whereFi ⊆Qi for ∀i ∈ {1, . . . ,n}.

For this automaton, we define a configuration(q,w) ∈ (QE1, . . . ,QEn)×T∗, where
QEi = Qi ∪{λ} for ∀i ∈ {1, . . . ,n}. The pair((λ, . . . ,λ),w) represents the start configura-
tion, ((q1, . . . ,qn),λ) for qi ∈ Fi the final configuration.

On the set of configurations, we definea simple move: ((λ, . . . ,λ),w)⇒ ((S1, . . . ,Sn),w),
where∃(S1, . . . ,Sn) ∈ δP, in the starting case, else((q1, . . . ,qn),a1v1a2v2 . . .anvn)⇒
((p1, . . . , pn),v1v2 . . .vn), for pi ,qi ∈Qi , ai ∈ T ∪{λ} andvi ∈ T∗, only whenpi ∈ δ(qi ,a)
for 1≤ in ≤. Underline specifies the symbols where are actually placed reading heads.
We definea nondeterministic linear n-parallel automaton(n-LA) with the extension of the
transition function toQi × (T∗∪{λ})→ 2Qi and theai ’s domain toai ∈ T∗.

Relation⇒ can be extended to its transitive closure⇒+ and transitive and reflexive
closure⇒∗.

The language accepted by an n-RAM =(Q,T,δ,δP,F,n), for w∈T∗, q=(q1, . . . ,qn)
∈ F , is L(M) = {w|((λ, . . . ,λ),w)⇒∗ ((q1, . . . ,qn),λ)}.

Example 1.The n-LAM1 =({X1, . . . ,X4,F1, . . . ,F4,X′
3},{a,b},δ,δP,{F1, . . . ,F4},4),

whereδ(X1,a) = {X1,F1}, δ(X2,b) = {X2,F2}, δ(X3,aa) = {X3,X′
3}, δ(X4,b) = {X4,F4},

δ(X′
3,a)= {F3}, δP = {(X1, . . . ,X4),(F1,F2,X′

3,F4)}, accepts the languageL1 = anbna2n+1bn.
When M accepts the sentence “aabbaaaaabb”, it goes through this configurations:

((λ, . . . ,λ),aabbaaaaabb), ((X1, . . . ,X4),aabbaaaaabb), ((X1, . . . ,X4),abaaab),
((F1,F2,X′

3,F4),λλaλ), ((F1,F2,F3,F4),λλλλ).



4 RESULTS

Theorem 1. Let G= (N1, . . . ,Nn,T,S,P,n) is an n-PRLG in a normal form. For
every n-PRLG G, there exists an equivalent n-RA M so that L(G) = L(M).

At first, we must prove that for every n-PRLGG, defined above, there exists an au-
tomatonM so thatL(G) = L(M), and in to opposite, for every n-RA automatonM, there
exists an n-PRLGG so thatL(M) = L(G). For interest, we sketch the first part of the proof:

Proof 1a.(Sketch)The proof will be done by construction an n-RA automaton for a
general n-PRLGG = (N1, . . . ,Nn,T,S,P,n) in a normal form. LetM = (Q,T,δ,δP,F,n),
where Q = (Q1, . . . ,Qn), F = (F1, . . . ,Fn), {Fi} ∪Ni ∈ Qi , Fi /∈ N1 ∪ . . . ∪Nn for ∀i ∈
{1, . . . ,n}. The setsδ andδP are defined in this way: ForS→ x∈ P wherex = x1x2 . . .xP,
xi ∈ T, it will be (S,F2, . . . ,Fn)∈ δP, Si ∈Q1 for ∀i ∈ {1, . . . ,n} and for∀i ∈ {1, . . . , p−1}:
Fi ∈ δ(Sp,xp). If x = λ then must(F1, . . . ,Fn) ∈ δP. For S→ X1 . . .Xn ∈ P whereXi ∈ Ni ,
1 ≤ i ≤ n, it will be (X1, . . . ,Xn) ∈ δP. For X → x ∈ P, x = x1x2 . . .xp, X ∈ Nj , it will
be Zi ∈ Q j for ∀i ∈ {1, . . . , p− 1}, p ≥ 1. If p = 1 thenFj ∈ δ(X,x1), else if p > 1
thenZ1 ∈ δ(X,x1), Fj ∈ δ(Zp−1,xp) and for∀i ∈ {1, . . . , p− 2}: Zi+1 ∈ δ(Zi ,xi+1). For
X → y∈ P, wherey = y1y2 . . .ypY, X,Y ∈Nj , there will beZi ∈Q j for ∀i ∈ {1, . . . , p−1}.
For p = 0: Y ∈ δ(X,λ). If p = 1 thenY ∈ δ(X,y1) and if p > 1 thenZ1 ∈ δ(X,y1),
Y ∈ δ(Zp−1,yp), and for∀i ∈ {1, . . . , p−2}: Zi+1 ∈ δ(Zi ,yi+1). Proof 1a continues with
provingL(G)⊆ L(M) andL(M)⊆ L(G).

Proof 1b.(Sketch) For an n-RAM = (Q,T,δ,δP,F,n) we construct an n-PRLG
G = (N1, . . . ,Nn,T,S,P,n) in a normal form: IfQ = (Q1, . . . ,Qn) thenNi = Qi for ∀i ∈
{1, . . . ,n} If there exists a sequence of moves((λ, . . . ,λ),x) ⇒ ((S1,F2, . . . ,Fn),x) ⇒m

((F1, . . . ,Fn),λ), for a stringx ∈ T∗ of the lengthm, we addS−→ x into P. For all n-
tuples in the form(X1, . . . ,Xn) ∈ δP we addS→ X1, . . . ,Xn into P. For every nonterminal
X from G and every terminal symbola∈ T we addX → aY into P whenY ∈ δ(X,a) and
Y /∈ F1∪ . . .∪Fn, respectiveX → a whenY ∈ δ(X,a) andY ∈ F1∪ . . .∪Fn. It remains to
proveL(G)⊆ L(M) andL(M)⊆ L(G) again.

Theorem 2. For every nondeterministic regular n-parallel automaton there exists a
nondeterministic linear n-parallel automaton.

This fact arises out of regular and linear languages have the same generative capacity
so that for every regular grammar exists an ekvivalent linear grammar.

REFERENCES

[1] Rosebrugh, R.D., Wood, D.: Restricted parallelism and right linear grammars, Com-
puter Science, 1972
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