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ABSTRACT 
The article deals with finding a resonance frequency of a simple cylindrical cavity 

resonator for a certain geometrical structure of electromagnetic field. Both analytical and 
numerical solutions are included. The latter uses a frequency domain finite element method  
(FDFE). Results given by both methods are compared. 

1 INTRODUCTION 

Due to profound property changes during the process of designing resonance circuits 
with microwave resonance frequencies, inductors and capacitors cannot be used. [2] suggests 
a cavity resonator as a simple solution. We deal with a special type with vacuum-filled cavity 
and ideally conductive walls and try to find a resonance frequency of a specific resonator. 

2 ANALYTIC SOLUTION 

Analytic solution of a cylindrical resonator can be found in e.g. [2]. Using 
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we calculate magnetic field B  from harmonic . The 
out coming time-variable magnetic field causes an electric field. 
As a result the original electric field has to be “corrected”. This 
causes a need for “correction” of the magnetic field for more 
precise 
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B , etc. The electric field can therefore be written in the 
form of an infinite series, expressed by a zero-grade Bessel 
function of the first type  (see Fig 1). The electric field in the resonator cavity therefore is: 0J

Fig. 1:      Function 0J  
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where r is distance from the resonator axis. We use the second root of the given Bessel 
function  ( ) and compute a resonance frequency of a cylindrical resonator with 

m. If the outer walls are in such a distance from the resonator axis that the 
electric field is neutral, (1.1) enables us to find the resonance frequency of the resonator: 
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3 NUMERICAL SOLUTION 

We identify the positive direction of the z-axis with the direction 
of vector E  identical with the resonator axis (see fig. 2). As [3] 
suggests, we substitute  into a wave equation (regarding 
that the field intensity amplitude does not change in the positive 
direction of the z-axis). We get a wave equation: 
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with boundary conditions 0=× En  (tangential components of
ideal conductor are zero) and 0)( =×∇× En  (change of compo
vector in the direction of normal to an ideal magnetic conducto
zero). Instead of an exact distribution of intensity we substitute 
an approximate distribution . ),( yxe
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),( yxR  shows error of the approximate solution in the given 
points of the area in question. This function – residue – ceases 
to be a function of time for a steady harmonic state.  

When discreting the analysed structure, use of 316 right-
angled triangles (with side lengths adjusted to the shape of a 
circle) showed adequately precise. Considering symmetry of 
the resonator and homogeneity of the electric field in the directi
object can be simplified to a quarter of the resonator circular sect

r 

For the space discreted structure we approximate the test

linear function e , where  are the values 

vertexes,  linear base functions. We substitute the piece
(2.2) and using the weighted residue method we minimize 
transformed PDE (2.2) for a continuous test field into an
values of the test field as unknown scalar coefficients. If the nu
equals number of unknown knot values , we get a solvable sys
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Fig. 2:      Cavity resonato
 electric field intensity of an 
nents of the electric intensity 
r must be on such a surface 

on of the z-axis, the analysed 
ion and 79 elements (Fig. 3). 

Fig. 3:      Discreting the 
structure 

 field e  by a piecewise 

of the test field in the triangle 

wise linear approximation to 
the residue. Thus we have 
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where S, T are matrices of known coefficients and e is the vector of unknown knot values of 
the test field. Solutions of this equation are represented by pairs [k2, e] (see [1] and [3]). 

4 COMPARISON 

I have chosen such vectors e, for which the value corresponding to the distance of r 
from the resonator axis approximates zero. This condition results in GHz (as well 
as 1.311 GHz and several other values as FDFE was not “aware” that the second root of  the 
Bessel function had been used in the previous solution and gave also results for other roots). 

GHz corresponds to the second root of  and the electric field flow from Fig. 4 
(middle) computed by MATLAB. Using the first root (

067.30 =f

067.30 =f 0J
405.21 =x ) and (1.1) we have: 
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We would get the corresponding flow of electric field by cutting off the negative values 
of intensity in fig. 4 (left). Electric field inside the resonator changes its size not orientation. 

r [m] r [m] 

E/E0 = f (r) E/E0 = f (r) 

Fig. 4: Comparison of results: analytic solution (left), electric field flow computed by 
MATLAB using FDFE for the second (middle) and the first (right) root of  0J .
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