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ABSTRACT

The article deals with finding a resonance frequency of a simple cylindrical cavity
resonator for a certain geometrical structure of electromagnetic field. Both analytical and
numerical solutions are included. The latter uses a frequency domain finite element method
(FDFE). Results given by both methods are compared.

1 INTRODUCTION

Due to profound property changes during the process of designing resonance circuits
with microwave resonance frequencies, inductors and capacitors cannot be used. [2] suggests
a cavity resonator as a simple solution. We deal with a special type with vacuum-filled cavity
and ideally conductive walls and try to find a resonance frequency of a specific resonator.

2 ANALYTIC SOLUTION

Analytic solution of a cylindrical resonator can be found in e.g. [2]. Using
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we calculate magnetic field B from harmonic E = E,e'”. The

out coming time-variable magnetic field causes an electric field.
As a result the original electric field has to be “corrected”. This
causes a need for “correction” of the magnetic field for more |

precise B, etc. The electric field can therefore be written in the
form of an infinite series, expressed by a zero-grade Bessel
function of the first type J, (see Fig 1). The electric field in the resonator cavity therefore is:

Fig.1:  Function J,
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where r is distance from the resonator axis. We use the second root of the given Bessel
function J, (X, =5.52) and compute a resonance frequency of a cylindrical resonator with

r =87.85e-3m. If the outer walls are in such a distance from the resonator axis that the
electric field is neutral, (1.1) enables us to find the resonance frequency of the resonator:

8
fos52-C —s50— 310 _3006H,
27t 2787.85e 3

3 NUMERICAL SOLUTION

We identify the positive direction of the z-axis with the direction

of vector E identical with the resonator axis (see fig. 2). As [3]
suggests, we substitute E, = E(X, y)e'” into a wave equation (regarding
that the field intensity amplitude does not change in the positive
direction of the z-axis). We get a wave equation:
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with boundary conditions nxE=0 (tangential components of electric field intensity of an
ideal conductor are zero) and nx(V x E)=0 (change of components of the electric intensity

vector in the direction of normal to an ideal magnetic conductor must be on such a surface
zero). Instead of an exact distribution of intensity we substitute
an approximate distribution e(X,Y).
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R(X,y) shows error of the approximate solution in the given

points of the area in question. This function — residue — ceases
to be a function of time for a steady harmonic state.

When discreting the analysed structure, use of 316 right- '
angled triangles (with side lengths adjusted to the shape of a Fig. 3:  Discreting the
circle) showed adequately precise. Considering symmetry of structure
the resonator and homogeneity of the electric field in the direction of the z-axis, the analysed
object can be simplified to a quarter of the resonator circular section and 79 elements (Fig. 3).

For the space discreted structure we approximate the test field e(x,y) by a piecewise

M
linear function e(x,y) = ZEm N, (X,y), where e, are the values of the test field in the triangle

m=1
vertexes, N (X,Y) linear base functions. We substitute the piecewise linear approximation to

(2.2) and using the weighted residue method we minimize the residue. Thus we have
transformed PDE (2.2) for a continuous test field e(X, y) into an algebraic equation with knot

values of the test field as unknown scalar coefficients. If the number of weighting functions
equals number of unknown knot values e, we get a solvable system of algebraic equations:

Se+k’Te=0



where S, T are matrices of known coefficients and e is the vector of unknown knot values of
the test field. Solutions of this equation are represented by pairs [k?, €] (see [1] and [3]).

4 COMPARISON

I have chosen such vectors e, for which the value corresponding to the distance of r
from the resonator axis approximates zero. This condition results in f, =3.067 GHz (as well
as 1.311 GHz and several other values as FDFE was not “aware” that the second root of the
Bessel function had been used in the previous solution and gave also results for other roots).

f, =3.067 GHz corresponds to the second root of J, and the electric field flow from Fig. 4

(middle) computed by MATLAB. Using the first root (X, =2.405) and (1.1) we have:

8
f,=2405—C =2405— 10 _1307GH;
2rr 2787.85¢-3

We would get the corresponding flow of electric field by cutting off the negative values
of intensity in fig. 4 (left). Electric field inside the resonator changes its size not orientation.
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Fig. 4. Comparison of results: analytic solution (left), electric field flow computed by
MATLAB using FDFE for the second (middle) and the first (right) root of J, .
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