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ABSTRACT 
In technical praxis we often encounter coupled problems. There are two methods of 

computation: direct or indirect method. One of the possibilities how to solve these problems is 
to use the analogy between different physical models. This article demonstrates using the 
similarity of physical models for the modeling of special electromagnetic problem. 

1 PARTIAL DIFFERENTIAL EQUATIONS OF BOUNDARY PROBLEMS 

Common boundary problems can be formulated with help of the following equations 
Laplace’s equationEquation Section (Next) 

0=u∆           (1.1) 

Poisson’s equation 
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Helmholtz’s equation 
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Common heat - conduction equation (diffusional) 
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Thermal equation 
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Biharmonic equation 

0=∆∆u           (1.8) 

Where ∆ is Laplace’s operator defined as 
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u is every function with continuous partial second derivatives in area Ω, that fulfills 
equation (1.10). a,b,c are constants dependent of material properties. 

),...,,( 21 nxxxfu =∆         (1.10) 

2 SIMILARITY OF PHYSICAL MODELS 

Common types of boundary problems formulated by Poisson 
equation:Equation Section (Next) 

Electrostatic field 

ρϕε =⋅− )( egraddiv         (2.1) 

Current field 

ee qgraddiv =⋅− )( ϕγ         (2.2) 

Thermal field 

qgradTkdiv =⋅− )(         (2.3) 

3D static magnetic field without current 

0)( =⋅− mgraddiv ϕµ         (2.4) 

2D static magnetic field with current 

zyx JgradAdiv =⋅− )( ,ν        (2.5) 

Where ε is permittivity, ρ is charge density, ϕe is electrical potential, γ is conductivity, 
qe is current source (in current field), k is heat-carrying capacity, q is heat generation rate per 
unit volume (in thermal field), T is temperature, µ is permeability, ϕm is scalar magnetic 
potential, ν is reluctivity, Jz is z component of current density, Ax,y are x, y components of 
magnetic potential. 

3 MODELING OF TECHNICAL PROBLEMS 

Some technical problems cannot be solved as independent physical problems. In the 
technical praxis different types of fields are combined as described by equations (1.1) –(1.4). 
One of the existing problems is for example to solve Poisson’s equation and use it to model 



  

simple light problem, see 3.11. (materials ≠ f(λ), λ ∈ <0,1 µm – 100 µm >). 

3.1 MODELING OF LIGHT SOURCE 
A necessary part of the design process of light sources is the modeling and experimental 

verifying of results. Models based on radiation principle are counted amongst the most 
accurate mathematical models of light sources counts. One possibility is to use standard one–
purpose programs; but another possibility offers us usage of sophisticated numerical methods, 
among them falls the finite element method, for example program ANSYS. In ANSYS is in 
area of thermal field analysis solved radiation.  

It is possible to use standard program tools in the ANSYS program – modeling, 
discrimination to net of elements, solvers, evaluation and interpretation of results. The centre 
of the whole problem lies in the transformation of thermal field quantities into optical 
quantities. This can be done according to general rules described in book [2]. In the following 
text the basics of modeling the primitive light problem are described. The verification of the 
model of light source is done by experiment. Following these results it is possible to continue 
in modeling other problems such as hollow light guides and their applications. 

3.2 MODEL BUILDING 
The formulation of the basic thermal model is based on the first law of thermodynamics  
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where q is specific heat, ρ is specific weight, c is specific solidification heat, T is 
temperature, t is time, k is coefficient of calorific conduction, v is velocity of flow. This model 
can be with respect to application of Snell’s principles simplified into form  
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According to Stefan-Boltzmann principles, heat transfer by way of radiation between 
surfaces with relative indexes i, j is formulated as 

( )44
jiijiiri TTSAq −= ,εσ        (2.8) 

where qri is specific heat transferring from surface with index i, σ is Stefan-Boltzmann’s 
constant, εi is emissivity of surface, Ai,j is projection factor of surface with index i to surface 
with index j, Si is area of surface with index i, Ti, Tj are temperature of surfaces i, j. Picture 
number 1 shows relation between quantities in equation (2.8). Projection factor Ai,j is 
determined as 
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When the projection factor is determined, it is possible to use the Gallerkin’s principles 
for converting this problem into the model (2). Marginal and initial conditionsmust be 
respected.  
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Impact area  (coeff. 0,4)  
     h=0.5 m  

Lampshade  
(white color coeff. 0,9)  

Source of light 
is clear bulb with P = 100 W 

where K is coefficients matrix, T is columnar matrix of searched temperatures, Q is 
columnar matrix of heat sources. From temperature T is determinate thermal flow Tf  as 

( )gradTkTf −=         (2.11) 

 

 

 

 

 

 

 

Fig. 1. Determination of projection factor Ai,j 

For radiation principles are elements of column matrix of heat sources Q determined as  
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and after adjustment for mathematical model (2) is  
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The heating model will be used for modeling of light problem using Snell’s principles 
in optics. To light source with intensity of lightning E (lx) corresponds with equivalent heat 
quantity density of heat flow q´´, light flow Φ(lm) corresponds equivalent quantity - heat 
flow q´.  

3.3 MODEL OF SIMPLE LIGHT SOURCE IN PROGRAM ANSYS 
The geometrical model was built in the program by standard means.  The mathematical 

model is created  with help of the automated mesh generator creating elements and nodes. The 
used element is SOLID70.  

 

 

 

 

 

 

 

 
Fig. 2. Geometrical model of the problem 

Fig. 2. describes characteristic geometrical shape of the model. It consists of a 



  

lampshade source, the source is a classical bulb P = 100 W. The bulb is made of pure glass 
and wolfram fiber. We seek the dispersion of light flow in modeled area. 

 

 

 

 

 

 

 

Fig. 3. Geometrical model of the problem and results of solution 

3.4 RESULTS OF STATIC ANALYSIS OF THE MODEL 
 
In Fig.3. and Fig.4. the values of light flux in the area of the modeled problem are 

shown. Marginal conditions are ideally dark walls at r = 1 m distance from the light. Results 
retrieved by the numeric modeling were verified by experimental measurement. Differences 
were between (5 – 20) % from results of the numerical modeling.  

 
 
 
 
 
 
 
 
 

Fig. 4. Results on the surface under the modeling light 

ACKNOWLEDGEMENTS 

The paper has been prepared as a part of the solution of FRVŠ project No. 2169 / 2003. 

REFERENCES 

[1] Fiala, P.: Analýza sdruženého elektromagnetického modelu pulsního zdroje napětí nebo 
proudu, Výzkumná zpráva, závěrečná, č.3/02, Brno, FEKT VUT, 102 pages, 30.8.2002 

[2] Stratton, J. A.: Teorie elektromagnetického pole. Praha, Státní nakladatelství technické 
literatury, 1961, 592 pages 

[3] Kadlecová, E.  Methods modelling used for design of lighting systems in lighting 
technology and design of reflectors. STUDENT EEICT 2003 3.part, Student EEICT 
2003. Brno: VUT Brno FEKT a FIT, 2003, s. 340 - 683, ISBN 80-214-2379-X 

[4] Horák, Z., Krupka, F., Šindelář,V. : Technická fysika. Praha SNTL 1961 


