

ARBITRARY PRECISION LIBRARY FOR APPROXIMATE
SYMBOLIC ANALYSIS OF ANALOG CIRCUITS

Ing. Martin HORÁK, Doctoral Degree Programme (2)
Dept. of Radio Electronics, FEEC, BUT

E-mail: horakma@feec.vutbr.cz

Supervised by: Dr. Zdeněk Kolka

ABSTRACT
This contribution deals with a mathematical library, which implements operations with
complex matrices and vectors for approximate symbolic analysis of circuits. The each
element of the matrix or the vector is implemented with user-defined precision. The core of
the library is based on the arbitrary precision library GMP.

1 INTRODUCTION
The basic network functions such as input impedance, the voltage transfer function etc. are
important while analyzing analog circuit behavior. There are two types of circuit analysis
programs – program like the circuit simulator SPICE that gives user numeric values (in graph
representation) and program that can produce symbolic expression as a quotient of two
algebraic cofactors. While graph representation cannot determine influence of particular
circuit part to circuit behavior, description using symbolic expression can determine it due to
its generality. However, the symbolic analysis of a relatively small circuit with 10 nodes gives
a huge expression that is not interpretable. It leads to some simplification techniques, which
lower generality, but significantly improve interpretability of such expression. All
approximation schemes require numerical values at desired frequency range of validity. There
are three basic approaches to approximate symbolic analysis. A simplification before
generation (SBG) is based on simplifying a circuit before generation of a symbolic expression
- simply remove or contract admittances in the circuit which have insignificant influence to
the network behavior. The next method, known as simplification during generation (SDG),
generates directly simplified expression of a circuit. The last method is SAG, simplification
after generation – firstly, the exact expression is generated and then the least significant terms
are removed. This technique is usable only for small circuit because of huge amount
generated terms. Mostly, techniques SAG and SDG are combined with SBG. Currently, the
techniques SBG and SAG are implemented in Symbolic Network Analysis Program SNAP
[1]. These techniques require computing nominal values at user defined design points
(frequencies). Experiments show that for large circuits with 100 nodes, the 80-bit precision
that is currently implemented in SNAP is not enough. This leads to using arithmetic with
more (user defined) precision that enables solving sets of linear equations, computing
determinant, inverse matrix, etc. more precisely.

2 LIBRARY

The library was developed in the Microsoft Developer studio .NET environment in C++
language. Arbitrary precision floating-point arithmetic was already developed by GNU
project Multiple Precision Arithmetic Library (GMP) [2], so the part of this library was used
as the core. The library implements basic operations with numbers of arbitrary precision as
adding, multiplying, conversion functions from standard types as double, integer, etc. Each
arbitrary precision number contains two parts – the mantissa and the exponent. The mantissa
has a user selectable precision, limited only by available computer memory. The exponent of
each number is a fixed precision; on 32 bit systems is approximately in the range 2-68719476768
to 268719476736.

The main implementation of the new mathematical library contains three independent object
classes

1) The class CGmp encapsulates some arbitrary precision function of GMP library.

2) The class CComplex contains two members – the real and the imaginary part of the
number and provides operations with complex numbers.

3) The classes CMatrix and CVector implement operations as the matrix inversion, the
matrix determinant and the Gaussian elimination.

Classes CComplex, CMatrix and CVector are implemented as templates so any type of
operands can be used, such as float, double or CGmp. However, before use of class CGmp,
the precision should be selected.

The class CComplex was designed to be faster as possible – operation multiply minimizes
number of required multiplications [3], because this operation is slow. The eq. 1 requires 4
multiplications, one addition and one subtraction, while eq. 2 requires only three
multiplications (ac,bd,(a+b)(c+d)), plus two additions and three subtractions

)()())((adbcibdacidciba ++−=++ , (1)

]))([()())((bdacdcbaibdacidciba −−+++−=++ . (2)

Operation modulus (3) and dividing (4) of two complex operands was implemented to prevent
undesirable overflows, underflow, or loss of precision [3]







<+

≥+
=+

babab

baaba
iba

2

2

)/(1

)/(1
, (3)










<
+

−++

≥
+

−++

=
+
+

dc
ddcc

adcbibdca

dc
cddc

cdabicdba

idc
iba

)/(
])/([])/([

)/(
)]/([)]/([

. (4)

Operations that the CMatrix class implements (as the matrix inversion or solving sets of linear
equations) use full pivoting [3].

3 RESULTS

The random complex matrix was generated for the testing of the library. Fig. 1 shows
required time for matrix inversion for precision 1024, 512, 256 and 128 bits using AMD
Athlon XP 1200+ processor. Numerical values are in the tab. 1.

Matrix order N
Time [ms]

10 30 50 75 100 125 150

128 14 311 1462 4877 11587 26108 44724

256 18 421 1939 6339 15232 29743 50883

512 24 571 2574 8525 20059 39207 67187
Precision

in bits

1024 40 981 4467 14831 34820 67477 116438
Tab. 1: Time for computing inverse matrix order N using precision 128, 256, 512 and 1024

bits

0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

0 50 100 150

Matrix dimension N [-]

Ti
m

e
fo

r m
at

rix
 in

ve
rs

e
[m

s]

128
256
512
1024

Fig. 1: Time for computing inverse matrix order N with number precision 128, 256, 512

and 1024 bits

It can be seen that time required for the matrix inversion significantly increases with matrix
dimensions. Large circuits can contain ordinarily 100 nodes, so time for evaluation inverse
matrix using precision 1024 bits takes approximately 35 seconds. It is obvious that the
implementation of the arithmetic with arbitrary precision requires significantly more CPU
power than commonly available 80-bit arithmetic in the Athlon processor.

The fig. 2 shows required time for computing the inverse matrix order N=100 as the function
of required precision.

0

500

1 000

1 500

2 000

2 500

3 000

3 500

4 000

4 500

5 000

0 200 400 600 800 1000

Precision [bits]

Ti
m

e
[m

s]

Fig. 2: Required time for computing inverse matrix order N=100

4 CONCLUSION

The arbitrary precision library for large complex matrices was described. The library can be
used to solve problems, for that basic 80-bit precision is not enough, such as find zeros or
poles of the network function. However, computing with matrices with arbitrary precision
requires much CPU power, although it can be further reduced by use critical routines written
in assembler. For solving larger set of linear equations than one hundred, some relaxation
method is probably better choice instead of Gaussian elimination. The main use of this library
is supposed by the program SNAP for symbolic analyzing of electrical circuits that was
developed in the department of Radioelectronics in last years.

ACKNOWLEDGEMENTS

The contribution has been supported by Grant Agency the Ministry of education in contract
number 1622/2004.

REFERENCES
[1] Kolka, Z.: New Version of Snap Program. In: Proc. Of the International Conference

Telecommunications and signal processing TSP 2000. Brno 2000, p. 100-103.

[2] GNU Multiple precision arithmetic library, Free Software Foundation,
http://swox.com/gmp/ (2004).

[3] Press W., Teukolsky A., Vetterling T., Flannery B.: Numerical recipes in C, 2nd edition,
Australia, Cambridge University Press 2002, ISBN 052143108.

