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ABSTRACT 
This contribution deals with a mathematical library, which implements operations with 
complex matrices and vectors for approximate symbolic analysis of circuits. The each 
element of the matrix or the vector is implemented with user-defined precision. The core of 
the library is based on the arbitrary precision library GMP. 

1 INTRODUCTION 
The basic network functions such as input impedance, the voltage transfer function etc. are 
important while analyzing analog circuit behavior. There are two types of circuit analysis 
programs – program like the circuit simulator SPICE that gives user numeric values (in graph 
representation) and program that can produce symbolic expression as a quotient of two 
algebraic cofactors. While graph representation cannot determine influence of particular 
circuit part to circuit behavior, description using symbolic expression can determine it due to 
its generality. However, the symbolic analysis of a relatively small circuit with 10 nodes gives 
a huge expression that is not interpretable. It leads to some simplification techniques, which 
lower generality, but significantly improve interpretability of such expression. All 
approximation schemes require numerical values at desired frequency range of validity. There 
are three basic approaches to approximate symbolic analysis. A simplification before 
generation (SBG) is based on simplifying a circuit before generation of a symbolic expression 
- simply remove or contract admittances in the circuit which have insignificant influence to 
the network behavior. The next method, known as simplification during generation (SDG), 
generates directly simplified expression of a circuit. The last method is SAG, simplification 
after generation – firstly, the exact expression is generated and then the least significant terms 
are removed. This technique is usable only for small circuit because of huge amount 
generated terms. Mostly, techniques SAG and SDG are combined with SBG. Currently, the 
techniques SBG and SAG are implemented in Symbolic Network Analysis Program SNAP 
[1]. These techniques require computing nominal values at user defined design points 
(frequencies). Experiments show that for large circuits with 100 nodes, the 80-bit precision 
that is currently implemented in SNAP is not enough. This leads to using arithmetic with 
more (user defined) precision that enables solving sets of linear equations, computing 
determinant, inverse matrix, etc. more precisely. 



  

2 LIBRARY 

The library was developed in the Microsoft Developer studio .NET environment in C++ 
language. Arbitrary precision floating-point arithmetic was already developed by GNU 
project Multiple Precision Arithmetic Library (GMP) [2], so the part of this library was used 
as the core. The library implements basic operations with numbers of arbitrary precision as 
adding, multiplying, conversion functions from standard types as double, integer, etc. Each 
arbitrary precision number contains two parts – the mantissa and the exponent. The mantissa 
has a user selectable precision, limited only by available computer memory. The exponent of 
each number is a fixed precision; on 32 bit systems is approximately in the range 2-68719476768 
to 268719476736. 

The main implementation of the new mathematical library contains three independent object 
classes  

1) The class CGmp encapsulates some arbitrary precision function of GMP library.  

2) The class CComplex contains two members – the real and the imaginary part of the 
number and provides operations with complex numbers. 

3) The classes CMatrix and CVector implement operations as the matrix inversion, the 
matrix determinant and the Gaussian elimination. 

Classes CComplex, CMatrix and CVector are implemented as templates so any type of 
operands can be used, such as float, double or CGmp. However, before use of class CGmp, 
the precision should be selected.  

The class CComplex was designed to be faster as possible – operation multiply minimizes 
number of required multiplications [3], because this operation is slow. The eq. 1 requires 4 
multiplications, one addition and one subtraction, while eq. 2 requires only three 
multiplications (ac,bd,(a+b)(c+d)), plus two additions and three subtractions 

 )()())(( adbcibdacidciba ++−=++ , (1) 

 ]))([()())(( bdacdcbaibdacidciba −−+++−=++ . (2)  

Operation modulus (3) and dividing (4) of two complex operands was implemented to prevent 
undesirable overflows, underflow, or loss of precision [3] 
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Operations that the CMatrix class implements (as the matrix inversion or solving sets of linear 
equations) use full pivoting [3]. 

 



  

3 RESULTS 

The random complex matrix was generated for the testing of the library. Fig. 1 shows 
required time for matrix inversion for precision 1024, 512, 256 and 128 bits using AMD 
Athlon XP 1200+ processor. Numerical values are in the tab. 1. 

 

Matrix order N 
Time [ms] 

10 30 50 75 100 125 150 

128 14 311 1462 4877 11587 26108 44724 

256 18 421 1939 6339 15232 29743 50883 

512 24 571 2574 8525 20059 39207 67187 
Precision  

in bits 

1024 40 981 4467 14831 34820 67477 116438 
Tab. 1: Time for computing inverse matrix order N  using precision 128, 256, 512 and 1024 
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Fig. 1:  Time for computing inverse matrix order N with number precision 128, 256, 512 

and 1024 bits 

It can be seen that time required for the matrix inversion significantly increases with matrix 
dimensions. Large circuits can contain ordinarily 100 nodes, so time for evaluation inverse 
matrix using precision 1024 bits takes approximately 35 seconds. It is obvious that the 
implementation of the arithmetic with arbitrary precision requires significantly more CPU 
power than commonly available 80-bit arithmetic in the Athlon processor. 

The fig. 2 shows required time for computing the inverse matrix order N=100 as the function 
of required precision.  
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Fig. 2: Required time for computing inverse matrix order N=100 

4 CONCLUSION 

The arbitrary precision library for large complex matrices was described. The library can be 
used to solve problems, for that basic 80-bit precision is not enough, such as find zeros or 
poles of the network function. However, computing with matrices with arbitrary precision 
requires much CPU power, although it can be further reduced by use critical routines written 
in assembler. For solving larger set of linear equations than one hundred, some relaxation 
method is probably better choice instead of Gaussian elimination. The main use of this library 
is supposed by the program SNAP for symbolic analyzing of electrical circuits that was 
developed in the department of Radioelectronics in last years.  
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