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ABSTRACT

The paper deals with the derivation of a higher-order time-domain scheme for Time-
Domain Finite Element Method (TD-FEM). An explicit and an implicit time-domain update
scheme based on the third order approximation in time are presented.

1 INTRODUCTION

The TD-FEM is based on solving the wave equation [1]
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where E denotes an unknown electric field intensity vector, u,. is relative permeability, uo
denotes permeability of vacuum, ¢ and ¢ are permittivity and conductivity of media, respec-
tively.

We can use nodal finite elements [1]. Then, the vector equation (1) can be divided into
three scalar equations for each component of E . E.g., the z component is given by
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The following semi-discrete equation can be obtained by multiplying (2) by the space weigh-
ting function N;, by integrating the product over the finite element, and by applying Green’s
identity [1]
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Now, we have to approximate an unknown electric field using space basis functions N;
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Here u; denotes unknown nodal values of electric field and N is the number of unknown
coefficients. Substituting (4) into (3), we can obtain the matrix differential equation [1]
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where u=[u1, us,...., uy]" denotes the vector of unknown coefficients and T, R, S are square

matrices, which terms are given as follows
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In (6), & and ¢, are permittivity of vacuum and relative permittivity. The vector f denotes an
excitation vector given by
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2 HIGH-ORDER APPROXIMATION IN TIME DOMAIN

Lagrange polynomial is the most useful approximation for time-domain scheme. The
usual approximation in the time domain is based on the second-order Lagrange polynomial
[2]. In this paper, the third-order approximation is developed. In the next, the superscript
denotes a time-step index. Due to the symmetry, the terms u, ', u' and u* denote values
related to equidistantly divided time points 30t/2, -0t/2, 6t/2, 36t/2, respectively. We use the

third-order general form of Lagrange polynomial given by
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where a, b, ¢ and d are constants.

Now, we have to compare the derivatives of this polynomial (in given time points 35¢/2,
-o0t/2, ot/2, 30t/2) with general finite differences [1] in order to obtain constants a, b, ¢ and d.
In this case, we geta =-1, b =3, ¢ = -3, d = 1. The polynomial (8) melts into
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The first derivative of the polynomial (9) is given by
du(r) 1
dt  48(dr)
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The second derivative of the polynomial (9) can be expressed as
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Now, we can substitute (9), (10), (11) into the semi-discrete equation (5). In this case, we
obtain
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In order to obtain the time-domain scheme, the equation (12) is multiplied by the function
W(t) and integrated in time. This approach is called the weighting of residual in the time
domain [2]. Dividing the result by d¢, we obtain
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where coefficients ®;, ®,, ®; and the vector g are given as follows
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Now, we have to set coefficients ®;, ®,, @3 in order to ensure the stability of the scheme (13).
According to the general stability conditions [2], we obtain the following inequalities
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We can experimentally show that even in this case, the stability is not ensured for any struc-
ture: the stability is the best when choosing ®;=0 and ®;=0. In this case, the equation (13)
melts into
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Now, we can extract the general three-step algorithm for the computation of the time
response. We have to set ®,>3/4 for the unconditional stability. The minimum dispersion
error is reached for ®,=3/4. After substituting ®,=3/4, transposing equation (16) and re-
indexing time steps, we get the implicit algorithm
FT LB +1(5z)zs}u"-2 + {—lT +§(5z)2s}u"—l + {—lT +§(5z)zs}u" +
2 3 8 2 8 2 8

+{%T+%&B+é(§t)zs}u”“ +(afe . (17)

In order to obtain the explicit algorithm, we have to choose ®; so that the multiplicand of S in
is zero for the time number u°. This condition is satisfied for ®,=1/4. After substituting
0,=1/4, transposing equation (16) and re-indexing time steps, we get the explicit algorithm
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3 EXAMPLE

The cuboidal resonator with dimensions 150 mm, 180 mm and 130 mm was analyzed.
The discretization mesh was set to N = 20 per side of the structure. The problem was solved in
the frequency range from 0 to 4 GHz, with 0.5 MHz resolution. The corresponding spectra of
the method are not shown here, as they cannot be compared easily. Instead, a list of wave-
mode frequencies is generated.

The two-step and three-step algorithms were used for analyzing this resonator. The
dispersion errors were found to be the same. On the other hand, the explicit three-step
algorithm exhibits better stability for a longer time step.
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Fig. 1:  FEigenfrequency error for TM modes, N=20

4 CONCLUSION

The explicit scheme based on the three-step algorithm (18) exhibits better stability than
the explicit scheme based on the two-step algorithm presented in [2], because the explicit
two-step algorithm is set at ®,=0 and accordingly Dirac pulse is used as a weighting function
in the time domain. The explicit three-step algorithm is set at ®,=1/4 and accordingly
constant function is used as a weighting function in the time domain.
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