
GENERATION OF SENTENCES WITH THEIR
PARSES BY SCATTERED CONTEXT GRAMMARS

Jǐrí TECHET, Master Degree Programme (4)
Dept. of Information Systems, FIT, BUT

E-mail: xteche00@stud.fit.vutbr.cz

Supervised by: Dr. Alexander Meduna

ABSTRACT

This paper uses the propagating scattered context grammars to generate their lan-
guage’s sentences together with their parses (the sequences of productions whose use lead
to the generation of the corresponding sentences). It proves that for every recursively enu-
merable language,L, there exists a propagating scattered context grammar whose language
consists ofL’s sentences followed by their parses.

1 INTRODUCTION

Scattered context grammars generate their languages in a parallel ways, thus inspir-
ing us to use them in parsing somehow. Indeed, parsing is inseparable form grammars, and
as parallelism fulfils a crucial topic in its investigation today, the use of scattered context
grammars in relation to parsing surely deserves our attention.

In this paper, we use the propagating scattered context grammars, which contain no
erasing productions, to generate their language’s sentences together with their parses – that
is, the sequences of productions whose use lead to the generation of the corresponding sen-
tences (in the literature, derivations words and Szilard words are synonymous with parses).
It demonstrates that for every recursively enumerable language,L, there exists a propagat-
ing scattered context grammar whose language consists ofL’s sentences followed by their
parses. That is, if we eliminate all the suffixes representing the parses, we obtain precisely
L. This characterization of recursively enumerable languages is of some interest because
it is based on propagating scattered context grammars whose languages are included in
the family of context-sensitive languages, which is properly contained in the family of re-
cursively enumerable languages. Simply stated, the use of propagating scattered context
grammars in this paper provides us with parses corresponding to the generated sentences,
which obviously represent useful information, and they incease their power in this way.

2 PRELIMINARIES

For an alphabetV, card(V) denotes the cardinality ofV. V∗ represents the free
monoid generated byV under the operation of concatenation. The unit ofV∗ is denoted
by ε. SetV+ = V∗−{ε}. Forw∈V∗, |w| and reversal(w) denotes the length ofw and the
reversal ofw, respectively. ForU ⊆V, occur(w,U) denotes the number of occurrences of
symbols fromU in w. Forv∈V+, rm(v) denotes the rightmost symbol ofv. ForL ⊆V∗,
alph(L) denotes the set of symbols appearing in a word ofL. A homomorphism,ω, over
V∗, represents an almost identity if there exists a symbol, #∈ V, such thatω(a) = a for
everya∈ (Σ−{#}) andω(#) ∈ {#,ε}.

A scattered context grammar, a SCG for short, is a quadruple,G= (V,P,S,T), where
V is an alphabet,T ⊆ V, S∈ V −T, andP is a finite set of productions such that each
production has the form(A1, . . . ,An) → (x1, . . . ,xn), for somen≥ 1, whereAi ∈ V −T,
xi ∈V∗, for 1≤ i ≤ n. If every(A1, . . . ,An)→ (x1, . . . ,xn) ∈ P satisfiesxi ∈V+ for all 1≤
i ≤ n, G is apropagating scattered context grammar, a PSCG for short. If(A1, . . . ,An)→
(x1, . . . ,xn) ∈ P, u = u1A1u2 . . .unAnun+1, andv = u1x1u2 . . .unxnun+1, whereui ∈V∗, 1≤
i ≤ n, thenu⇒ v[(A1, . . . ,An) → (x1, . . . ,xn)] in G or, simply, u⇒ v. Let ⇒+ and⇒∗

denote the transitive closure of⇒ and the transitive-reflexive closure of⇒, respectively.
The language of Gis denoted byL(G) and defined asL(G) = {x | x∈ T∗,S⇒∗ x}.

3 DEFINITIONS

Throughout this paper, we assume that for every SCG,G = (V,P,S,T), there is a
set of production labels denoted by lab(G), such that card(lab(G)) = card(P); as usual,
lab(G)∗ denotes the set of all strings over lab(G). Let us label each production inP
uniquely with a label from lab(G) so that this labeling represents a bijection from lab(G) to
P. To express thatp∈ lab(G) labels a production(A1, . . . ,An)→ (x1, . . . ,xn), we writep :
(A1, . . . ,An)→ (x1, . . . ,xn). For everyp : (A1, . . . ,An)→ (x1, . . . ,xn)∈P, lhs(p) and rhs(p)
denoteA1A2 . . .An andx1x2 . . .xn, respectively. Furthermore, l-pos(p, j) and r-pos(p, j) de-
noteA j andx j , respectively. To express thatGmakesx⇒∗ yby using a sequence of produc-
tions labeled byp1, p2, . . . , pn, we writex⇒∗ y[ρ], wherex,y∈V∗, ρ = p1 . . . pn∈ lab(G)∗.
Let S⇒∗ x[ρ] in G, wherex ∈ T∗ andρ ∈ lab(G)∗; then,x is a sentence generated by
G according to parseρ. The language of generated sentences with their parsesis de-
noted byL(G)parseand defined asL(G)parse= {xρ | x∈ T∗,ρ ∈ lab(G)∗,S⇒∗ x[ρ]}; no-
tice thatL(G)parse⊆ T∗ lab(G)∗. Let π be the weak identity from(V ∪ lab(G))∗ to V∗

defined asπ(a) = a for every a ∈ V and π(p) = ε for every p ∈ lab(G). Observe that
L(G) = π(L(G)parse). Let G = (V,P,S,T) be a SCG. ForG, setπG = (π(V),πP,S,π(T))
with lab(G) = lab(πG) andp : (A1, . . . ,An)→ (π(x1), . . . ,π(xn))∈ πP iff p : (A1, . . . ,An)→
(x1, . . . ,xn) ∈ P. G is a proper generator of its sentences with their parsesif L(G) =
L(πG)parse. Consequently, everyx∈ L(G) is of the formx = yρ, wherey∈ (T− lab(G))∗

andρ ∈ lab(G)∗, andS⇒∗ y[ρ] in πG. Observe that alph(L(πG))∩ lab(πG) = /0.

4 RESULTS

Theorem. For every recursively enumerable language,L, there exists a PSCG,G, such
thatG is a proper generator of its sentences with their parses andL = π(L(G)).

Proof (Sketch). Let L be a recursively enumerable language. Then, there is a SCGG =
(V,P,S,T) such thatL = L(G). SetΦ = {〈a〉 | a∈ T}. Define the homomorhismγ from
V to (Φ∪ (V −T)∪{Y})+ asγ(a) = 〈a〉 for all a ∈ T andγ(A) = A for all A ∈ V −T.
Extend the domain ofγ to V+ in the standard manner; non-standardly, however, define
γ(ε) = Y rather thanγ(ε) = ε. Next, we introduce a PSCG,̄G = (V̄, P̄, S̄, T̄), such thatḠ
is a proper generator of its sentences with their parses andL(G) = π(L(Ḡ)). Finally, set
Γ = {$1,$2,$3}. Define the PSCG

Ḡ = ({S̄,X,Y,Z}∪Γ∪V ∪Φ∪ lab(Ḡ), P̄, S̄, lab(Ḡ)∪T)

with lab(Ḡ) = {b0c,b1c,b2c,b3c,b4c}∪Ξ1∪Ξ2∪Ξ3, whereΞ1 = {bp1c | p ∈ lab(G)},
Ξ2 = {ba2c | a∈ T}, Ξ3 = {ba3c | a∈ T}, andP̄ constructed as follows.

0. If ε ∈ L(G), addb0c : (S̄)→ (b0c) to P̄;

1. Addb1c : (S̄)→ (Xb1c$1ZS) to P̄;

2. For everyp : (A1, . . . ,An)→ (x1, . . . ,xn) ∈ P̄ add

bp1c : ($1,A1, . . . ,An)→ (bp1c$1,γ(x1), . . . ,γ(xn)) to P̄;

in addition, addb2c : ($1)→ (b2c$2) to P̄;

3. For everya∈ T, addba2c : (X,$2,Z,〈a〉)→ (aX,ba2c$2,Y,Z) to P̄;

ba3c : (X,$2,Z,〈a〉)→ (a,ba3c$3,Y,Y) to P̄;

4. Addb3c : ($3,Y)→ (b3c,$3) to P̄;

5. Addb4c : ($3)→ (b4c) to P̄.

Then, if ε ∈ L(G), S̄⇒ b0c[b0c] in Ḡ, whereas everyx∈ L(Ḡ)−{b0c} is generated bȳG
in this way:

S̄⇒ Xb1c$1ZS[b1c]⇒+ x[ρ]⇒ y[b2c]⇒∗ z[σ]⇒ u[ba3c]⇒+ v[τ]⇒ w[b4c]

wherea∈ T, ρ, σ andτ are sequences consisting fromΞ1, Ξ2 andΞ3, respectively.

REFERENCES

[1] Meduna, A.: Coincidental extension of scattered context languages, Acta Informatica
39, 307-314 (2003), Springer, ISSN 0236-0112

[2] Meduna, A.: Syntactic complexity of scattered context grammars, Acta Informatica
32, 285-298 (1995), Springer, ISSN 0001-5903

