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ABSTRACT

This contribution presents potential straightforward technique to extract temporal
information in auditory domain. Even though the final phoneme accuracy is comparable to
the traditional approach, it can be well suited to replace standard spectrum based techniques
used in ASR systems due to higher flexibility and computational inexpensiveness.

1 INTRODUCTION

Most of feature extraction methods used in current Automatic Speech Recognition
(ASR) systems are based on spectrum. However, such based techniques have distinct dis-
advantages, because they can be easily influenced by variety of issues, such as commu-
nication channel distortions or narrowband noise. Moreover, some other supplementary
techniques need to be applied to deal with realistic communication environments.

Many of the noise-robust techniques employ the temporal domain processing oper-
ations to increase robustness in ASR. Psychoacoustic experiments prove that peripheral
auditory system in humans integrates information of much larger time spans than the tem-
poral duration of the frame used in traditional speech analysis. This time span is of the
order of several hundred milliseconds. As the example of successive temporal domain
based techniques are dynamic cepstral coefficients. These coefficients are computed as the
first and second order orthogonal polynomial expansions of feature time trajectories, and
are referred to as delta and acceleration coefficients, respectively. They represent the slope
and curvature, respectively, of the feature trajectories, and are typically computed over 50
ms to 90 ms speech segments. Cepstral mean normalization, in which the long-term av-
erage is subtracted from the logarithmic speech spectrum, is another temporal processing
technique.

Recently, many progressive temporal domain processing algorithms have appeared,
where conventional spectral feature in phonetic classification is substituted by a several
hundred millisecond long temporal vector of critical band energies [1]. The phonetic class
is defined with respect to the center of this temporal vector. The stream of these vectors



goes to the input of classifier that attempts to capture the appropriate temporal pattern
(TRAP), and is called TRAP classifier (Fig. 1).
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Figure 1: Innovative idea of employment temporal information in ASR.

In the original approach, a set of vectors representing its temporal evolution is ex-
tracted from a particular time trajectory. Critical bands are usually used as a basis of these
time trajectories. In our approach we want to show that TRAPs do not have to be repre-
sented by time trajectories of spectral energy and can be derived a different way without

applying any spectral processing operations.
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Figure 2: Derivation of TRAPs in auditory domain.

2 DERIVATION OF TEMPORAL PATTERNS

TRAPSs are often examined in time evolution of basic sound units, phonemes, typi-
cally used in ASR. Traditionally, the speech signal is processed as a series of independent
short-time (e.g. 10 ms) frames. Each frame is transformed into spectral domain using
Fourier transform, and logarithmic critical band energies are derived.

In our approach, TRAPs are fully derived in auditory domain (Fig. 2). To preserve
frequency independence of classification, some sort of band pass filter bank needs to be



applied. Such analysis filter bank is being represented by gammatone filters whose center
frequencies and bandwidths match those of the critical bands. These linear phase gam-
matone filters are applied to the input signal to obtain an auditory-based time-frequency
parametrization, which approximates the patterns of neural firing generated by the audi-
tory nerve, and preserves the temporal information carried in speech.

Gammatone filters can be implemented using FIR or IIR filters [3]. In our approach,
FIR filters were used in order to implement linear phase filters with the same delay in each
critical band. The analysis filters have a length Nf-21 coefficients. They were obtained
by convolving a sampled gammatone impulse respggsg of lengthN = 128 with its
time reverse, where:

g(n) = a(nT)N~1e 2MERB)NT coq omfonT + ¢). (1)

T is the sampling periodi; is the center frequency,is the discrete sample index, b are
constants, an&RB f;) is the equivalent rectangular bandwidth of an auditory filter. For
an 8kHzsampled speech, 15 FIR filters were used.

To extract the energy from each pass band filtered speech signal, the signal needs to
be demodulated. Therefore filtered signal is multiplied by complex exponeffi&"T,
wherej is the complex operator. Finally, low pass filter (LPF) is applied to preserve only
non-modulated spectral components.

Our approach is not consistent with traditional method [1] in sense of derivation tem-
poral patterns from logarithmic critical band energies. In spectral analysis based technique,
the speech signal is processed as a stream of frames in order to capture non-stationary char-
acteristic of the speech signal (the speech is downsampled according to frame length and
frame shift, and frames are then used to derive final temporal trajectories). Due to deriva-
tion of TRAPs in auditory domain, the signal is still fully sampled, so that the length of
extracted TRAPs (hundred milliseconds) is largely higher than length of originally derived
TRAPs. The extraction of TRAPs from demodulated signals (each critical band is pro-
cessed independently) is done the same way as traditional framing. The signal is divided
into segments with some overlapping constant and the appropriate segment length. Each
such segment, is Hamming windowed, processed by logarithm and the mean is subtracted.
Created TRAPs have finally the same segment rate as in the original approach. Tempo-
ral evolution achieved by individual TRAP is sampled with primary sampling frequency,
which isks = 8 kHzin our experiments. The spectrum that can be computed from temporal
trajectory of critical band is referred to as modulation spectrum. Components of this spec-
trum for clean speech varies approximately in period of 1 to 20 Hz. Spectral components
the vary more rapidly or slowly are caused by non-speech artifacts and do not carry any
efficient information. Therefore we can downsample these temporal trajectories at least
by ratio 200 (modified=s will be 40 HZz) with appropriate low pass filtering. The whole
previously described technique for derivation of TRAPSs in auditory domain is given in
Fig. 3.

3 EXPERIMENTAL SETUP

To get understanding of the information that is available in the time trajectories, we
examine for patterns in the temporal evolution of phonemes. Therefore phoneme labeled



: I
=
T :
i 1 1 i '
0 2000 4000 6000 8000 10000 0 1000 2000 3000 4000
<
9 - o - : 9
i L '
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000
=1
e) _M\/\/\M =) f)
&
: . ol
50 100 150 200 250 0 1000 2000 3000 4000
—f[Hz]
0 2000 4000 6000 8000 10000
= .
“ ] "y bt
0 2000 4000 6000 8000 10000 0 20 40 60 80 100
— f[Hz]
j k e W 1
) \/_/ T

5 10 15 20 25 30 35 40
— time [samples]

Figure 3: a) Input speech sentendg £ 8 kH2). b) Spectrum of input signal passed
through %" gammatone band pass filter with= 531 Hz. ¢) Time domain interpretation

of filtered speech. d) Spectrum of filtered signal and multiplied by complex exponential. e)
Impulse response of the following LPF. f) Amplitude frequency response of the following
LPF. g) Filtered speech (dotted line) with demodulated energy (solid line). h) Energy
extracted from band passed signal. i) Modulation spectrum related to the energy of band
passed signal. j) Final TRAP - 1 sec. of energy after application of logarithm and mean
normalization with downsampling rati® = 200.

database is needed for our experiments [2]. Each single critical band is classified into
phonetic classes by a multi-layer perceptron (MLP) with 3 layers. The size of input layer
is determined by the length of TRAP. The hidden layer with sigmoid non-linearities have
300 neurons. The size of output layer is given by the number of classes. TIMIT database
with 42 phonetic classes is used to train individual band classifiers. The training data
is split into a training and cross-validation (CV) sets. Outputs of band classifiers are class
posteriors that are gaussianized (application of logarithm). Since there are 15 critical bands
available within the speech bandwidth, we have at our disposal 15 different TRAP outputs.

Then we use another MLP for combining the outputs obtained from each of the 15
TRAPs. The merger consists of 3 layers. The input to the combining network (called
merger) is the concatenated vector of posteriors of the 42 phonetic classes from each of
the 15 TRAPs (4% 15). The hidden layer contains 300 neurons. The size of output layer
is given by the number of classes (42). The merger is usually trained on different data
than used for training band classifiers. We used OGl-stories corpus [1] and considered 42
phonetic classes (same as for TIMIT). Therefore, for this new training data, TRAPs must
be generated and forward passed through band classifiers.

The phoneme recognition accuracy for a previously described classification in each
critical band is in the range of 21% - 25%. Tab. 1 shows the final phoneme recognition
accuracy of the merger on the CV and train set of OGI-stories corpus. Itis related to the 500



ms long TRAPS, 12.5 ms frame shift that results into 40 samples of TRAP (downsampling
ratioR= 100).

Technique | Best CV acc. [%]| Best train acc. [%0]
Traditional 51.49 61.01
Our 50.68 62.53

Table 1: Performance with the TRAPSs.

4 CONCLUSIONS

It has already been shown and published (and also successfully employed in feature
extraction algorithm for ASR [4]) that information extracted from temporal trajectories
can largely increase ASR performance, mainly when combined with classical features.
However, the solely proposed technique was based on spectrum analysis for derivation
of TRAPs. In this paper we gave a brief description of different technique for extraction
temporal information employed in auditory domain. The final performance on CV subset
is comparable (little bit worse for CV subset and better for train subset) to the traditional
approach. These results also show that with reasonable larger train corpus we should be
able to achieve higher final performance.

Proposed approach is advantageous in terms of possible modifications and compu-
tational inexpensiveness. For instance, it is effortless to change the time length of created
temporal segments, without touching frame shift (just downsampling ratio is modified),
and so on.
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