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ABSTRACT

The aim of this paper is to examine the possibility of visualization of potential
fields. The numerical data for the visualization process are computed by simulation system
TKSL/C. 3D potential fields are difficult to present; that is why the Particle Tracing method
is harnessed.

1 INTRODUCTION

Partial differential equation (PDE) is an equation involving functions and their partial
derivatives. PDEs are much more difficult to solve than ordinary differential equations and
very often they have to be solved by a numerical method.

The Modern Taylor Series Method (MSMT) provides an extreme fast and accurate
way to solve a system of differential equations. The TKSL/C is a simulation program
that utilizes MSMT. It is currently being developed by the High Performance Computing
Research Group at the Department of Intelligent Systems, FIT BUT. Having these starting
conditions it was the aim of the work to adapt TKSL/C for solving PDE.

The method of Particle Tracing enables human user of any process of calculation or
generation of 3D vector or scalar (potential) field to visualize the achieved results. Visu-
alization of 1D and 2D fields is quite a simple task, while visualization of 3D fields using



2D display leads to significant loss of information. One effective solution is to make the
visualization temporal: insert a number of particles into the field, let the field influence
their kinematics and visualize the motion of the particles.

2 ELLIPTIC PDE

Let us examine an elliptic partial differential equation (Laplace’s equation)

∇2u = 0 (1)

in 3D with some initial boundary conditions. The equation has to be transformed to a form
suitable for TKSL/C (i.e. to a system of ordinary differential equations).

The equation (1) can be written as
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Now we can replace the right side of the equation by∂u
∂t , and the second derivatives

using an approximation, getting thus
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Supposing that the examined area is divided with the steph in all directions we get
an ODE system

...
u′i, j,k = 1

h2(ui−1, j,k +ui+1, j,k +ui, j−1,k +ui, j+1,k +ui, j,k−1 +ui, j,k+1−6ui, j,k)
...

(4)

If we find the steady state of system (4) we will get solutions of theu(i, j,k).

3 VISUALIZATION BY PARTICLE TRACING

Let us consider a vector field of 3D vectors (it can be built out of a potential field just
using the∇ operator). We insert particles of zero size, massm, initial position~r0 and initial

speed~v0 (that may be~0). Every particlePi is affected by the vector field~f (~r): ~vi
′ =

~f (~r i)
mi

and every particle is moving through the examined region of the 3D space:

~vi = ∂~r i
∂t . (5)

If the particle leaves the examined region of space, it is re-inserted from the particle emit-
ter. Simple Euler integration by time quantums in real time and concurrent visualization
explores the 3D vector (or potential) field effectively.

Some degree of interactiveness improves the visualization significantly:

• The user can change the projection parameters: rotation, scale, etc.



• The user can define parameters of the particle emitter: its shape (rectangular sur-
face or volume etc.), number of particles emitted within a time unit, initial speed~v
(defined as a vector range), etc.

• Sometimes it is useful to modify the weights of the particlesmi .

• The visualization may be configured by numerous other parameters in real-time.

There are several approaches to particles’ coloring. Different scalar parameters of the
particles can be visualized this way: speed, speed change (acceleration), direction change,
measure of influencing force, etc. Either the brightness (intensity) of the particle is con-
trolled, or one or more scalar parameters determine a color from a color gradient (Hue,
ramp from one color to another, . . . ).

Since it would be inadequate to compute too much equations and interpolation algo-
rithm was used. Our research in the past [5] resulted in an interpolation algorithm operating
on octree-based hierarchical structures, which offers adaptive sub-optimal interpolation on
a structure with some degree of data compression.

4 RESULTS

The PDE (2) has been solved within a cubic areaΩ : (x,y,z)∈< 0,0,0>−< 1,1,1>
with the following initial boundary conditions: for the particle emitting side isu(x,y) = 0,
for the opposite sideu(x,y) = 4sin(πx)sin(πy), all the other sides haveu = 1− z. An
example of obtained results is shown in Fig. 1.

Some auxiliary programs have been created for generation of system in form (4) with
the initial boundary condition and another for computation of vector fields needed by the
particle tracing algorithm.

In this way it was possible to study the behavior of the TKSL/C when solving large
systems of equations: TKSL/C successfully solved systems of tens thousands equations.
During the tests was exploited a unique feature of MSMT – the automatic integration step
setting which sped up the computation considerably.

5 DISCUSSION

• In order to get reasonable results we have to cover the examined area with a dense-
enough grid of points where we actually compute the solutions. Unfortunately, this
leads to very large systems of differential equations, especially in case of 3D prob-
lems.

• Making the grid denser introduces a new problem: the obtained system of ordinary
differential equations may becomestiff which is generally difficult to solve due to
the short integration step that has to be used during the computation [3].

• Solving and visualizing a large system requires lots of computer memory and pow-
erful processor.

The new simulation program TKSL/C which utilizes Modern Taylor Series Method,
optionally the arbitrary long arithmetic (using the GMP library) and a new approach to
solution of stiff systems deals with the issues:



Figure 1: Potential field as computed by TKSL/C and displayed using the particle tracing
method

• In order to deal with the first problem a new version of simulation language TKSL –
TKSL/C has been created. The syntax of the input has been simplified, the number
of equations is not limited, the process of computation can be automatized.

• A new method for solving stiff equations [3] is now being integrated with the new
TKSL/C and is expected to reduce the amount of computation work considerably.
Besides, TKSL/C is now capable of using arbitrary wide arithmetics which has a
positive effect on the computation, too [2].

• Since the MSMT requires only the basic mathematical operations (+,-,*,/) for the
calculations, very simple specialized elementary processors can be designed for their
implementation thus creating an efficient parallel computing system with a relatively
simple architecture [4].

The visualization algorithm can be improved in several ways:

• Some modifications, especially to the traces (tails) of the particles, could be done in
order to increase the amount of human-perceptible information in static images.



• Particle tracing and rendering could be done in parallel, using massively parallel
hardware architectures [6]. At the moment, hardware acceleration of particle tracing
and rendering is one of our primary focuses.

• Future development and improvements will be presented within the Jim project [7]
accessible on the web.

6 CONCLUSION

The simulation program TKSL/C is now usable for solving partial differential equa-
tions. Because of the unique features of TKSL/C the solution is obtained with both great
accuracy and speed.

By using the Particle Tracing method it is possible to present the results in a very
clear way. This way of visualization is in a big measure relying in real-time animation and
interactiveness – static images produced by this algorithm are not as clear.

ACKNOWLEDGEMENTS

This work has been supported by the Grant Agency of Czech Republic (GACR) grant
No. GA102/01/1485 – “Environment for Development, Modelling, and Application of Het-
erogeneous Systems”, and grant No. GA102/02/0507 – “Computer Graphics Algorithms
with FPGA Support”.

REFERENCES

[1] Kunovský, J.: Modern Taylor Series Method, Habilitation work, FEI VUT Brno, 1995
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