
MESH MORPHING

Jindřich PARUS, Master Degree Programme (5)
Dept. of Computer Science And Engineering, FAV, ZČU

E-mail: jparus@students.zcu.cz

Supervised by: Dr. Ivana Kolingerová

ABSTRACT
A morphing or metamorphosis is the process of continuously transforming one

geometric object into another. This technique is used mainly in animation (special effects) and
design. Our work aims at 3D geometric objects given in boundary representation. The goal of
our work is to develop a method which works more or less automatically (i.e. there is no need
to manually specify correspondence between the source and target objects) and which
produces realistic animations.

1 METHOD OVERVIEW

We are following ideas proposed in [1] and [2]. The task of morphing is usually
formulated as follows. Given two source models M1 and M2, the goal is to compute a
topology and geometry of the model M(t), where t ∈ <0; 1>, so that the shape of M(0) is the
same as the shape of M1 and the shape of M(1) is the same as the shape of M2. The model M
is a combination of both source models so it can represent shape of the source model and the
shape of target model at the same time. In-between phases of morphing are then produced by
interpolating extremal vertices positions (i.e. one extreme position is M in the shape of M1
and second is M in the shape of M2). Model M is in further text called supermesh. The
process of morphing is usually divided into three steps.

1. Finding a correspondence between the source and target model. For purposes of
morphing we find a correspondence of vertices, it means which vertex from
model M1 corresponds to which vertex from model M2.

2. Construction of a supermesh. The supermesh is a model that represents both the
source and target object.

3. Interpolation of corresponding vertices. Selecting convenient method of
interpolation and finding trajectories for the vertices is a big problem by itself
and it is beyond the scope of our work. We consider only a simple linear
interpolation.

In the following text we will describe steps 1 (section 2) and 2 (section 3) in more detail.

2 FINDING THE CORRESPONDENCE

This step involves finding a mapping of the vertices from model M1 to the surface of
model M2 and vice versa. This situation is shown in Fig.1.

Fig. 1: Mapping of the vertices from M1 to the surface of model M2 and vice versa.

As we can see, in a general case a vertex of model M1 is mapped somewhere on the
surface of model M2, more concretely on some triangle. The question is how to find this
particular triangle. In the area of morphing this is usually solved by mapping the source
objects into a common parameter domain. The natural parameter domain for genus 0 meshes
(i.e., without a hole) is a unit sphere. For star-shaped polyhedra we can use a spherical
projection. If we want to handle a wider class of objects we have to find a mapping that maps
bijectively source models to the parameter domain (i.e., spring embedding [1] or harmonical
maps [3]).

If we are dealing only with star-shaped polyhedra, we can use the spherical projection
from a star-point. The star-point lies inside a kernel of the polyhedron and it can be found by
intersecting of halfspaces (halfspaces are bounded by model faces).

After the parametrization of the models, we can find the position of a particular vertex
of the model M1 on the surface of the model M2. For point location, we can use standard
techniques, but we have to adapt them for spherical triangles because the triangles of the
model became spherical triangles in projection. For representing a position of a vertex
relatively to the triangle we use barycentric coordinates.

3 SUPERMESH CONSTRUCTION

Once we have found a mapping in the previous step, we can start to construct the
supermesh M. As we have said before, the supermesh is a combination of both source and
target object; combination in that sense that the M has topology of M1 and M2. This will be in
the further text called „shared topology“.

In this step we will merge both spherical projections. This is also often called „a map
overlay computation“. In Fig.2 we can see how to compute a shared topology.

 a) b) c)

Fig. 2: Shared topology: a) Parts of two source models. b) Intersections. c) Resulting
shared topology with the newly inserted edge (bold), dotted edges are the edges added in

order to have the resulting shared topology triangulated.

Fig. 2a) shows parts of two models, for a simplicity the M2 model is represented by one
edge only. To achieve the shared topology, we have to insert edges of the model M2 into the
topology of the model M1. In Fig. 2b) we can see that we have to find intersections of the
edges of the model M2 with the edges of the model M1. Once we have found all intersections,
we can insert the edge of the model M2 into the model M1. Newly inserted edge is marked
bold in Fig.2c). In Fig. 2c) we can also see that some more edges have been added in order to
have a resulting shared topology triangulated (the process of triangulation will be described in
section 3.2).

Now we will explain how to compute intersections between the edges of M1 and M2. In
a general case the edges of M1 and M2 are nonparallel and nonintersecting and they do not
intersect, but by projecting the edges into the common parameter domain the edges can
intersect. The problem is that the edges became great arcs in the projection. Thus this step
involves computing intersection of great arcs. Using a brute force algorithm, we can intersect
all edges from M1 with all edges from M2, but with O(N2) complexity. But we can use some
kind of “walking” algorithm that has lower expected complexity (one is proposed in [2]).

3.1 MERGING THE SOURCE AND TARGET OBJECT
Till now we have worked with models in their parameterization in the common

parameter domain. Also the intersections were computed in the projection. We can project the
intersections back to the model edges. As we mentioned before, edges of the source models
are in general case nonintersecting and nonparallel, so one intersection in parameter domain
produces one vertex on the edge of M1 and one vertex on the edge of M2. This situation is
depicted below in Fig.3 where we can see how the intersections are projected back to the
source and target model.

Fig. 3: Projection of intersections back to the source and target model.

After finding all intersections, we can merge the objects in these intersections. We can
start with merging the sets of edges and vertices of the M1 and M2. We do not merge the sets
of faces because the resulting set of faces will be different. Information about faces will be
extracted after the merging process (this step is described in the section 3.2).

Next, the process of merging goes as follows. First the edges of the source object are
splitted in these intersections, this splitting produces new vertices and edges. Both edges and
vertices are added to the data structures of the supermesh. Then the target object is processed
in a similar way, it means that all edges are also splitted, new edges are added to the
supermesh, however, the newly obtained vertices are already present in the supermesh from
processing of the source object.

Now we have a supermesh that is a combination of both the source and target models.
We have achieved shared topology but the shape of the supermesh is something between M1
and M2 as we can see in Fig. 4a).

 a) b) c)

Fig. 4: The resulting supermesh. a) Non-transformed supermesh. b) The supermesh
transformed to the shape of M1. c) The supermesh transformed to the shape of M2.

In Fig.4a) it is possible to see that some vertices do not have the right position with the
respect to the shape of M1 yet. More concretely, badly positioned vertices are former vertices
of the model M2. These vertices have to be transformed to lie on the surface of the model M1.
For this purpose we can use already computed barycentric coordinates of these vertices. Fig.
4b) shows the supermesh transformed into the shape of M1. The marked vertex from Fig. 4a)
is already pushed back to the surface of M1. Finally Fig. 4c) shows the supermesh
transformed into the shape of M2.

3.2 SUPERMESH TRIANGULATION
In this phase we have the model described by edges. For purposes of shading and other

higher-level manipulation, we have to describe the object as a set of triangles. The problem is
that the edges form polygons with up to six edges and it is necessary to triangulate them. We
cannot use an arbitrary triangulation because the polygons are in general case non-planar. Our
method is a modification of the method proposed in [3]. The triangulation method is as
follows. For each vertex we maintain a list of incident edges and we have to establish their
order, so we sort those edges by angle. Again, edges are not in one plane, so it is necessary to
project them to a plane and perform angular sorting in the plane. Then we process the sorted
edge fan and if two adjacent edges in the edge list are not connected with an edge, we add a
new edge.

In the following section we will present some results of our method.

4 EXAMPLES

Fig. 5 shows various morphing transitions. It can be seen how new faces appear during
the morphing process.

Fig. 5: Examples of morphing transitions.

5 CONCLUSIONS

We have presented a method for transforming one object into another so that the
transformation looks realistic and do not produce disturbing effects. Now we are able to
process only star-shaped objects because of the mapping method and we have to manually
specify the star-point. In the future work we would like to handle a wider class of objects.
Also we want to allow the user to specify some important corresponding features and exploit
this information as much as possible.

ACKNOWLEDGEMENT
This work was supported from the Ministry of Education of The Czech Republic,

project MSM 235 200 005. The author would like to thank to Doc. Dr. Ing. I. Kolingerová for
professional assistance and to my colleague Ing. P. Vaněček for language correction.

REFERENCES
[1] Alexa, M.: Merging Polyhedral Shapes with Scatered Features, The Visual Computer,

Vol. 16, No. 1, pp. 26-37, 2000

[2] Kent, J.R., Carslon W.E., Parents R.E.: Shape Transformation for Polyhedral Objects,
Computer Graphics (SIGGRAPH’92) 26, pp. 47-54

[3] Kanai, T., Suzuki, H., Kimura F.: 3D Geometric Metamorphosis based on Harmonic
Map, The Visual Computer, Vol. 14, No. 1, pp. 166-176, 1998

