
SBOX FRAMEWORK

Maroš IVANČO, Master Degree Programme (1)
Dept. of Computer Science and Engeneering, FEI, SUT in Bratislava, Slovakia

E-mail: ivancoma@hotmail.com

ABSTRACT
This document discusses automated building of user interface using the XML language.

I will describe reasons that served as motivation to start the work on the project. You will also
find application of the Model-View-Controller design pattern and so called W3C model in the
process of design and implementation of the SBox framework. I will also summarize features
of the product at the end of the document.

1 INTRODUCTION

I met with automated building of the user interface first time few years ago. After
several nights spent by endless changes in the GUI, I decided to automate my work. I started
to generate a menu using a configuration file. The information about names, icons and tool-
tips was stored in the Lisp-like list structure. Even though I implemented the component, I did
not expand the strategy because of the parsing complexity.

I met with the framework Struts (STRUTS PROJECT) few years later. Struts is the
implementation of the Model-View-Controller design pattern – the pattern widely used in the
world of J2EE as a pattern for creation of multi-tier interactive applications. During the time,
I needed to create GUI within a school project. I realized that it is possible to apply most parts
of the Model-View-Controller design pattern in the process of creation local (not web) GUI.
Thus, I decided to apply the pattern with application of so-called W3C model as a model for
presentation tier. To my surprise it worked. Despite the simplicity, I was able to add new
functionality and it all worked together. The problem of parsing complexity solved XML.

I would like to present the result of my work within the project SBox. I will describe in
short order design pattern Model-View-Controller (SINGH, 2002) and so-called W3C model.
Next, I will describe asset of the patterns application in the process of solving the problem of
creation local GUI. Furthermore, I will describe design and implementation of the SBox
framework. Finally, I will show some interesting features and I will share usage experience.

2 MODEL-VIEW-CONTROLLER DESIGN PATTERN

Model-View-Controller (SINGH, 2002) design pattern is widely used approach for
creation of multi-tier interactive applications. Model-View-Controller (hereinafter MVC)
divides an application into three layers – Model, View, and Controller. Each of the layers has

specific tasks and responsibilities. Model binds data model of the application and the business
logic. View presents input and output screens. The Controller layer controls the flow of the
screen according to the actual request and state of the application. One of the important
features of the MVC is low level of coupling between the layers. Because of this feature, an
application designed according to the pattern is more flexible, less sensitive to changes with
more simple and cheaper maintenance. Low level of coupling also allows developers to work
at different layers of the application simultaneously.

The MVC pattern is designed according to client-server architecture and expects an
implementation on the top of some request-response protocol. The Controller layer cannot be
used directly within the SBox framework, because there is no natural flow of screens in the
local GUIs.

Almost all components in the Java programming environment follow the concept of
different layers separation using implementation of some “model” interfaces. Thus, almost all
components can be used directly within the SBox framework. Despite the fact, that the way of
a presentation depends on the data presented, and that there must exist a way for presentation
layer to communicate the model, I will not deal with the design of the Model layer. The topic
is beyond the scope of this document.

2.1 W3C MODEL
The W3C model (W3C PROJECT) is a reflection of the experience with web technologies

and indirectly results from W3C specifications. The model further divides presentation layer,
gaining interesting features that are easy to map to the environment of visual component
composition libraries in Java.

The essence of the model lies in the consistent separation of the data structure from the
presentation structure and the way the data will be displayed (Figure 1). Data

XSLT CSS
JSP XML XHTML Display

Fig. 1: W3C model in the context of presentation layer

structure in the form of XML (what to display) is transmitted to the client, where the data
structure is transformed to the presentation structure (where to display) using XSLT. The
presentation structure in XHTML is further displayed using CSS style-sheets (how to
display). When the dynamic changes are needed, the JavaScript is used. The XML in the
W3C model is equivalent to the model components; XHTML is equivalent to the content of
the presentation-structure element in a SBox configuration file. Visual beans with resource
files serve with functions similar to those in CSS style-sheets. Interpreted JavaScript is
replaced by native Java code. The additional flexibility of the presentation layer allows
thorough isolation of the changes in the presentation layer. The parts of the layer are more
comprendious, reusable, and with cheaper maintenance.

3 SBOX FRAMEWORK

I will describe SBox framework as I have designed, implemented, and used it. I divided
chapter into three parts. In the first part, I will describe an encapsulation of a visual
component, realization of the division the layers Model and View, and mapping of user inputs
into actions. Next, I will describe communication between the layers, and the communication
between visual components. In the part Modularity, I will describe the composition of
component from its subcomponents. Finally, I will describe standard extensions of the
framework and especially custom tag binding mechanism.

3.1 ENCAPSULATION

The base of the framework lies in the two classes Context and RootContext

depicted on the figure 2. The classes represent a context responsible for creation of the visual
component. The context also binds model and information about the visual component
environment. The context offers to its component information about look-and-feel theme,
local settings, subcomponents, components accessible using ID, resources, and about
components, which are part of the application model. The context also contains methods for
its initialization from configuration files.

JApplet
org.inpure.sbox.RootCont

+instance:RootContext
+locale:Locale
+idMap:Hashtable
+resources:Hashtable
+model:Hashtable
+themes:Hashtable

+RootContext
+RootContext
+init:void
+loadThemes:void
+main:void

org.inpure.sbox.Context

+instance:Context
+idMap:Hashtable
+resources:Hashtable
+model:Hashtable

+Context
+init:void
+loadImports:void
+loadModel:void
+loadResources:void
+getActionByName:Action
+getElementById:JComponen
+getModelElementByName:O
+getResourceByName:Resou

 content:JComponent

Fig. 2: Basic classes of the SBox framework

Even though the both classes are very similar, there is no way to create the inheritance
relation among them. The Java programming language forbids multiple inheritance. Thus, the
class RootContext serves as a context for top-level visual components (JFrame, or
JApplet) and binds application scope properties (theme, locale) and on the other hand,
Context serves as a context for subcomponents.

During initialization of the context, the information is loaded from the configuration file
into several hash tables and the visual component is created. An example of the configuration
file for a RootContext, with empty presentation structure, is depicted on the figure 3.
Following the figure, the model of the application will be filled, according to element model,

with two components with names: “machine” and “tableModel”. The element theme within
the plaf-mappings element specifies that the theme with name “idea” will be used. The
input elements within input-mappings element specify mappings between keystrokes

and the action objects accessible by their names. The action elements within action-
mappings element specify mappings between action names and their implementation
objects. Finally, the resource elements within resource-mappings element
specify loadable resources, that the application or component will use. Resources typically
contain localized information about icons, tool-tips and descriptions of the visual components.

<?xml version="1.0" encoding="UTF-8"?>
<rootContext xmlns="http://www.inpure.org/SBox">
 <imports>
 <import name="memoryPane" href="./memory/memoryPane.xml"/>
 </imports>
 <!-- Definition of non visible components that are part of the application model. -->
 <model>
 <item name="machine" type="org.inpure.emips64.machine.Machine"/>
 <item name="tableModel" type="javax.swing.table.DefaultTableModel"/>
 </model>
 <!-- Specifies theme to use.-->
 <plaf-mappings>
 <theme name="idea" type="org.inpure.sbox.plaf.IdeaTheme"/>
 </plaf-mappings>
 <!-- Defines presentation structure of the application.-->
 <presentation-structure/>
 <!-- Defines the application input mappings between a keystroke and a name of certain action. -->
 <input-mappings>
 <input keystroke="alt X" action="settings"/>
 </input-mappings>
 <!-- Defines the application action mappings between a name of certain action and the actual action
 object of specified type to be used.-->
 <action-mappings>
 <action name="fileMenu" type="org.inpure.sbox.actions.Action"/>
 <action name="runMenu" type="org.inpure.sbox.actions.Action"/>
 <action-mappings>
 <!-- Mapping between a name of the resource and the resource it self -->
 <resource-mappings>
 <resource name="action" href="org.inpure.emips64.resources.Action"/>
 </resource-mappings>
</rootContext>

Fig. 3: An example of the configuration file

The content of the element presentation-structure specifies the presentation
structure of the component. The element presentation-structure depicted on the
figure 3 is for the sake of clarity left empty. An example of the non-empty element is depicted
on the figure 4. A context would create, according to such presentation structure element,
visual component with one border panel (JPanel with border layout manager). Inside the panel
would be a toolbar in its north part. The toolbar contains one button, an empty combobox, and
another button. The action with the name “openProject” will fire after the first button
invocation and action with name “run” after the second button invocation.

 Thus, it is possible to set, using the elements of the configuration files, miscellaneous
features of the created component or application. The model layer and presentation layer are

consistently separated and communicate with each other using precisely defined interface of
the context.

3.2 MODULARITY
Despite the careful design, even simple application contains too many elements within

the presentation-structure element. In order to decrease the level of complexity within the
element,

<?xml version="1.0" encoding="UTF-8"?>
<context xmlns:="http://www.inpure.org/sbox/sboxComp">
<!-- Definition of non visible components that are part of the component model. -->
 <presentation-structure>
 <borderPane>
 <north>
 <toolBar>
 <toolBarButton action="openProject"/>
 <item type="javax.swing.JComboBox"/>
 <toolBarButton action="run"/>
 </toolBar>
 </north>
 </borderPane>
 </presentation-structure>
<!-- Defines the component's action mappings between a name of certain action and
the actual action object of specified type to be used.-->
 <action-mappings>
 <action name="first" type="org.inpure.sbox.actions.Action"/>
 </action-mappings>
 <resource-mappings>
 <resource name="action" href="org.inpure.emips64.resources.memory.Action"/>
 </resource-mappings>
</context>

Fig. 4: An example of the simple component configuration file
 I decided to add option to create modules to the SBox framework. An example of the
configuration file for simple component is depicted on the figure 4. Yes, the elements of the
configuration file are the same as in the chapter 2.1-Encapsulation. You can insert component
created according to such configuration file to the other component. First, you must declare
element within imports tag using the import element (figure 3). Next, you can insert
declared component to the certain place using its name as a reference. After the insertion, the
inserted component gains access to the models of its ancestors in the component hierarchy.
The components at the same level cannot share directly their models. Thus, the modularity,
besides the simplification of the configuration files, allows creation of the certain hierarchy in
the model of the whole application.

3.3 STANDARD EXTENSIONS
Framework SBox provides standard localization and internationalization features

inherited from the Java programming environment.

I have also designed and implemented mechanism of presentation structure custom tag

binding. The user can thus redefine implementation objects of the existing elements or even
define new ones. Thus, the meaning of the presentation elements can be modified or extended
to suite as many different projects as possible.

4 FEATURES

I created user interfaces applying the SBox framework within two projects. Consistent
separation of the model and presentation layer, and particularly flexibility resulting from the
use of configuration files allowed me to achieve rapid implementation and robustness. When
comparing with statically compiled application, the application runs, after successful
“loading” from its configuration file, with none or with minimal slowdown. The set of the
XML Schema grams is the integral part of the framework. In combination with suitable text-
editing tool this set decreases significantly probability of a bug introduction during the
configuration file composition. The framework also allows creation of the subcomponents
using the configuration files. You can subsequently use the subcomponents at different parts
of your application or even in the different projects. Thus, modularization, besides the
hierarchical ordering of the application model, increases reuse of the components. XML
representation of the configuration files makes changes of the application look-and-feel
simple even for users with minimal (or none) knowledge of the Java programming
environment. Thus, the user can edit the application in the way that suits his/her requirements
the most. Because XML is the language designed with respect to machine processing, the
framework allows automated generation or automated editing of the application using some
expert system. Of course, the SBox Framework is published under the terms of GNU GPL.

5 EPILOGUE

The SBox framework already served well in the process of creation GUI in the projects
eMips64 and evolutionX. Thus, I can rank it only very well. When comparing with similar
projects, the SBox framework especially differs in GNU GPL availability, optimal balance
between XML and Java code, and in no need for any scripting language within the
framework. In my opinion, the framework is suitable especially for fast GUI prototyping. In
the cases where the slightly slower “loading” of the application is not the problem, I would
recommend the SBox framework (because of its other features) also for deployment.

ACKNOWLEDGEMENT
I would like to thank to my friend Ondrej Holubek for his useful comments and

recommendations.

REFERENCES
[1] ALUR at al. 2001. Sun Java Center J2EE Patterns

[2] SINGH at al. 2002. Designing Enterprise Applications with the J2EETM Platform, Second
Edition

[3] STRUTS PROJECT, http://jakarta.apache.org/struts

[4] W3C PROJECT, http://www.w3c.org/

http://jakarta.apache.org/struts
http://www.w3c.org/

