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ABSTRACT

The paper describes an application of the FEM in modelling of the resonance charac-
teristics of piezoelectric resonators. The paper contains derivation of the weak formulation
of the problem based on the physical description of piezoelectric structures. Solving of the
problem leads to the set of linear equations with large and sparse matrices, which define
the generalized eigenvalue problem, from which we can obtain the frequency spectrum of
the resonator. Several iterative methods for solving the generalized eigenvalue problem are
used and the results are compared with measurement.

1 PROBLEM DESCRIPTION

The crystal made of piezoelectric material represents a system, where the deforma-
tion and electric field depend on each other. The deformation of the crystal induces the
electric charge on the crystal’s surface. As well, electric field causes the deformation of the
crystal. The most important thing in studying the behavior of the piezoelectric resonator
is its resonance frequency. It depends on many parameters (material properties, origin and
form of the cut, etc...). The experimental testing of piezoelectric resonators is very expen-
sive and means plenty of specimens and the analytic solution is able only for very simple
structures. Thus the motivation for the mathematical modelling of piezoelectric resonators
is to help to design the resonators with prescribed behavior.

1.1 PHYSICAL DESCRIPTION

Let us have the piezolectric resonator chracterized by proper material tensors. The
density of the material isρ. We denote the volume of the resonator asΩ and its boundary as
Γ. There are two differential equations governing the behavior of a piezoelectric continuum



- Newton’s laws of motion (1) and the quasistatic approximation to Maxwell’s equation (2)
(see [3])

ρ
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We will call them elastic and electric equations. Above equations are coupled by the
piezoelectric equations of state (3) and (4) (see e.g. [2])

Tij = ci jkl ·Skl +di jk ·Ek, i, j = 1,2,3. (3)

Dk = dki j ·Sij + εk j ·Ej , k = 1,2,3, (4)
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T is the stress tensor,D is the vector of electric flux density,u is the displacement vector,S
is the strain tensor,E is the vector of electric field,ϕ is the electric potential,c, d and~ε are
the stiffness, piezoelectric and permitivity tensors of the crystal (these tensors are typicall
for each material). We assume the symmetry of material tensors

ci jkl = c jikl = ci jlk = ckli j , di jk = dik j , εi j = ε ji

and also their positive definiteness. Assuming the harmonic electric loading of the res-
onator, we can expect the harmonic oscillations (ω is the frequency of voltage)

ϕ = ϕ0(x,y,z)cosωt, u = u0(x,y,z)cosωt ⇒ ρ
∂2ui

∂t2 =−ω2ρ ·ui . (5)

Substituting (3), (4) and (5) into (1) and (2), we get the modified versions of elastic and
electric equations, now for the unknown amplitudesu0 andϕ0 (we will write them without
the lower index 0)
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Boundary conditions on the part of the boundaryΓ1 are added

ui = 0 i = 1,2,3, ϕ = ϕD on Γ1. (8)

1.2 POINT OF INTEREST

In (6)-(8), the problem of harmonic oscillations is defined. Our goal is to find such
values of parametrω, which set the system in resonance (= oscillations with maximal
amplitudes). This means to find the case of singularity of the system (6)-(7) - it corresponds
to the singularity of linear system resulting from the discretization of the problem (6)-(8).



2 NUMERICAL SOLUTION

2.1 WEAK FORMULATION

The weak formulation and discretization of the problem (6)-(8) will lead to the linear
system, from which the resonance frequencies can be computed.

Comment: Let V(Ω) = {v|v ∈ W(1)
2 (Ω), v|Γ1 = 0} be the set of functions from

Sobolev spaceW(1)
2 (Ω) = {ϕ ∈ C(∞)

0 (Ω)|ϕ ∈ L2(Ω),∇ϕ ∈ [L2(Ω)]3}, which satisfy the
homogenous boundary condition onΓ1. Further, we denote( f ,g)Ω =

∫
Ω f gdΩ the scalar

product inL2(Ω).
We derive the weak formulation in the standard way (see e.g. [4], more precisely it is

described in [5]). We multiply the equations (6) with testing functionswi ∈V, summarize
and integrate them overΩ. As well, we multiply the equation (7) with testing function
φ ∈ V and integrate it overΩ. Using Green formula (integrals over the border are zeros)
and the symmetry of material tensors, we obtain the integral equations(
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2.2 DISCRETIZATION

For discretization of the problem (6)-(8), we use the tetrahedronal finite elements
with linear base functions. The approximations of the electric potential and displacement
are in (10)
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whereΦh denotes the set of base functions. These approximations are piecewise linear on
each element. We substituteuh andϕh into integral equalities (9). We require to them to
be fulfilled for all basic functions fromΦh:(
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It is equivalent to the linear system with symmetric matrix (the process of derivation of the
system matrix is in detail described in [5])(

K −ω2M PT

P E

)(
U
V

)
=

(
0
0

)
. (12)

U andV are values (of amplitudes) of displacement and electric potential in the nodes of
division. Elastic matrixK is symmetric and positive definite, as well as mass matrixM and
electric matrixE.



2.3 ALGEBRAIC PROBLEM

The system allows us, for givenω, to compute the amplitudes of vibration. But
more important is to find the resonance frequenciesωr . The resonance corresponds to the
maximal amplitudes of the vibration in some characteristic direction, which equals to the
singularity of the system matrix in (12). Thus we have to solve the problem(
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for unknownU, V, ωr . With respect to the positive definitness of the electric matrixE, let
us denote

A = C−PTE−1P, B = M , λ = ω2
r .

Then (13) is equivalent to the generalized symmetric definite eigenproblem

AX = λBX. (14)

If we have any positive eigenvalueλ, its root is the resonance frequency. The proper
eigenvectorX characterizes the mode of vibration.

For discretization and compilation of the global matrix, we use our own code. For
solving the eigenvalue problem (14), we use the procedures from the Lapack++ or Arpack++
library. From Lapack++ ([3]), we use algorithms based on generalized Schur decomposi-
tion. These algorithms solve the complete eigenvalue problem. From Arpack++ ([4]), we
use algorithms based on shift-invert method combined with LU factorization. These algo-
rithms, in contrast to Lapack++ code, solve the partial eigenvalue problem and deal with
the fact, that matrices are sparse.

3 SOME RESULTS

Described FEM model was calibrated and verified on the longitudinally vibrating
quartz resonator XYt-α - cut (for α = 0o− 5o) with equivalent thickness and both large
sides covered by silver electrodes. This resonator has got a simple geometry, thus the
resonance frequencies are very well known (for more precious definition of the testing
problem see [5]).

Computed frequencies of longitudinally vibrations are compared with the measured
frequencies (publicated in [1]) in the table below.

measured value (Hz) deviation max.(Hz) deviation min.(Hz)α computed values
67846 +123 −114 0◦ 68,55·103

68653 +67 −51 2◦ 68,82·103

70205 +60 −119 5◦ 69,05·103

In the figure (1), the convergence of computed frequencies (to the value 68.82 kHz),
in dependance on number of elements, is shown. The Arpack++ code was rather faster
then the Lapack++ code.



Figure 1: Convergence of the resonance frequency to the value 68,82·103 Hz

4 CONCLUSION

The mathematical model for computing the resonance frequencies of the piezoelec-
tric resonator has been built. The results of the described model approximate well the
measured results for tested simply shaped (rod or slide) resonators. It seems that our
model can have real application, e.g. in desining shape of the resonators vibrating with
required frekvencies. Nowadays, the more sofisticated numerical methods for solving the
eigenvalue problem are in development.

ACKNOWLEDGEMENT

This project was supported by Ministry of Education of the Czech Republic, project
code MSM 242200002.

REFERENCES
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[4] Rektorys K.: Variǎcní metody, Academia Praha 1989.

[5] P. Rálek: Modelování piezoelektrických jevů, Diploma thesis, FJFǏCVUT, Praha
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